Page

SECTION 1 GENERAL DESCRIPTION AND SPECIFICATIONS
1.0 General Description 1
SECTION 2 THEORY OF OPERATION
2.0 SYSTEM BLOCK DIAGRAM 5
2.1 S-100 MOTHERBOARD 7
2.2 BOARD SHUNTING 9
2.3 POWER SUPPLY 11
2.4 CENTRAL PROCESSOR BOARDS 13
2.4.1 - Model 451 Z80 Processor Board 13
2.4.2 - Model 645 Z80 Processor Board 16
2.4.3 - Model 971 Z80 Processor Board 20
2.4.4 - Model 8818088 Processor Board 24
2.5 MEMORY 27
2.5.1 - Model 465 64K Dynamic RAM Board 27
2.5.2 - Model 961 256K Dynamic RAM Board 31
2.6 I/O CONTROLLERS 33
2.6.1 - Model 444 I/O Board 33
2.6.2 - Model 631 I/O Controller Board 49
2.6.3 - Model 4804 Line Async. Comm. Controller 58
2.7 MULTIPROCESSOR BOARDS 61
2.7.1 - Model 740 I/O Processor Board 61
2.7.2 - Model 861 Multiprocessor Unit 66
2.8 FLOPPY DISK CONTROLLER BOARDS 71
2.8.1 - Model 431 Eloppy Disk Controller Board 71
2.8.2 - Model 930 Floppy Disk Controllet Board 75
2.9 WINCHESTER DISK DRIVE SUBSYSTEM 79
2.10 MODEL 662 VIDEO DISPLAY BOARD 83
SECTION 3 DISK DRIVES AND TAPE CARTRIDGE UNIT
3.0 TEAC FD-55 Floppy Disk Drive 90
3.1 Rodime-RO 200 Series Winchesters 96
3.2 Tape Cartridge System 101
SECTION 4 MEMORY, ELOPPY DRIVE AND WINCHESTER DRIVE TESTS
4.0 Memory Test Program 106
4.1 Floppy Drive Test 108
4.2 Winchester Drive Test 113
APPENDIX A FLOPPY DISK SUBSYSTEM SPECS 122
APPENDIX B IMS SYSTEM INEORMATION 123
Figure 1-1 5000 SX Microcomputer System \& Dimensions 1
Figure 1-2 5000 IS Microcomputer System \& Dimensions 2
Figure 1-3 Cartridge Tape Stand Alone Unit 3
Figure 1-4 51/4" Eloppy Disk Drive. 4
Figure 2-0 5000 IS Block Diagram 5
Figure 2-1 5000 SX Block Diagram 6
Figure 2-2 Twelve Slot Motherboard 8
Figure 2-3 DC Power Supply to Motherboard Connection 9
Figure 2-4 Power Supply Specifications 11
Figure 2-5 Power Supply 12
Figure 2-6 Model 451 CPU Board 15
Figure 2-7 Model 645 Z-80 Processor Board 19
Figure 2-8 Model 971 Z-80 Processor Board 23
Figure 2-9 Model 8818088 Processor Board 26
Figure 2-10 46564 KB Memory Board 30
Figure 2-11 Model 961 256K Memory Board 32
Figure 2-12 Model 444 Board Block Diagram 34
Figure 2-13 Computer to CRT Connection (444 Board) 38
Figure 2-14 Computer to Printer Connection 38
Figure 2-15 Computer to Centronics Printer Connection 40
Figure 2-16 Model 444 I/O Controller Board 48
Figure 2-17 631 Board to I/O Panel Connection 52
Figure 2-18 Computer to CRT Connection (631 Board). 52
Figure 2-19 Computer to Serial Printer Connection 53
Figure 2-20 631 Parallel Port Pin Listing 53
Figure 2-21 Computer to NEC Printer Connection 54
Figure 2-22 Computer to Centronics Printer Connection 55
Figure 2-23 Model 631 I/O Controller Board 57
Figure 2-24 Model 480 I/O Controller Board 60
Figure 2-25 Model 740 Multiprocessor Board 65
Figure 2-26 Model 861 Multiprocessor Board 70
Figure 2-27 $4315^{\prime \prime}$ Eloppy Disk Drive Controller Board 74
Figure 2-28 930 Eloppy Disk Drive Controller Board 78
Figure 2-29 Model 821 Winchester Controller Board 81
Figure 2-30 Winchester Interface Card 82
Figure 2-31 662 Board Switch Settings 86
Figure 2-32 662 Video Display Board 89
Figure 3-1 TEAC 51/4" Floppy Disk Drive 90
Figure 3-2 TEAC Floppy Disk Drive Board 94
Figure 3-3 TEAC Floppy Disk Drive Cable Diagram 95
Eigure 3-4 Rodime 51/4" Winchester Disk Drive 96
Eigure 3-5 Rodime Winchester Drive Cable Diagram 100
Figure 3-6 Stand Alone Tape Cartridge System 101
Figure 3-7 Switch Settings - Cartridge Tape Controller 103
Figure 3-8 Tape Cartridge System Controller Board 103
Figure 3-9 Record Format - Cartridge Tape Controller 104
Figure 3-10 Tape Cartridge Data Cable Orientation 105

General Description and Specifications

1.0 GENERAL DESCRIPTION

ims International manufactures microcomputer systems in two basic configurations: the 5000 and the 8000 . They are differentiated by the size of their floppy disk drives. All 5000 systems use $51 / 4^{\prime \prime}$ floppy disk drives, and 8000 systeris use $8^{\prime \prime}$ floppy disk drives. This manual examines the 5000 systems, describing each system and each board in detail.

There are two different IMS 5000 systems, the 5000 SX and the 5000 IS (Integrated System). Each uses the same boards, but they are in different enclosures.

IMS 5000 SX systems are table top systems featuring an enclosure design which presents a pleasing modern appearance while retaining rugged construction. The $5000 S X$ has provisions for three $51 / 4^{\prime \prime}$ drives, allowing any combination of floppy drives and Winchesters with up to two Winchester drives. Nine unused slots are available for system expansion. If the system has a Winchester drive, the Winchester controller board occupies one of these free slots.

Figure 1-1
5000SX Microcomputer System and Dimensions

IMS International
5000 Series Microcomputers/7.01.83/Page 1

5000 IS systems are integrated systems built into one compact unit. Each system has a CRT and a detachable keyboard. There is room for three drives, usually one Winchester and two half-width floppy disk drives. Five card slots are available for future system expansion. The Winchester controller board, if used, occupies one slot.

Figure 1-2
5000 IS Microcomputer System and Dimensions

All standard 8 bit 5000 systems contain the following features:

- 4 MHz Z80A Processor
- 64 K Dynamic RAM with Parity
- Selectable Baud Rate up to 19.2 KB with full modem control
- Floppy Disk Drive Subsystem
- Real Time Calendar/Clock with Battery Backup
- S-100 Motherboard
- Two year IMS Warranty

IMS International
5000 Series Microcomputer $\mathrm{s} / 7.01 .83 /$ Page 2

The differences between the 8 bit 5000 IS and the 5000 S are listed below.

8 -bit 5000 IS
8 slot motherboard high resoution CRT detached keyboard

8-b1t 5000SX

12 slot motherboard

Two add-on options are available for all IMS systems; the Multi-Processor Unit and the Cartridge Tape System.

The Multi-Processor Unit [MPU] is a board which converts a single user system into a multi-processing environment. The board contains a Z-80A microprocessor, 64 Kbytes of dynamic RAM with parity, four programmable interval timers, a 2 Kbyte boot EPROM, and a dual channel synchronous/asynchronous communication controller with full modem support, auto answer and auto dial. The MPU interfaces to the host CPU as an I/O device on the S-100 bus. Up to sixteen MPUs may be used in a single system. This board provides each user the performance of a dedicated processor while allowing access to a common data base.

The cartridge tape system serves as a start/stop backup memory for the high performance Winchester, and can also be used as a memory subsystem for data files and programs as would be required in a normal data processing environment. The tape unit uses the standard ANSI cartridge (DC 300 XL). The capacity of each cartridge varies depending on the format selected. The tape cartridge unit is mounted in a stand-alone enclosure.

Figure 1-3
Cartridge Tape Stand Alone Unit

Another option on IMS systems is the selection of the floppy disk drive size. There are two types of $5^{\prime \prime}$ floppy disk drives available from IMS, the double density (48 tracks per inch) and the quad density (96 tracks per inch) half-width drives.

Figure 1-4
5 k" Floppy Disk Drive

IMS International
5000 Series Microcomputers/7.01.83/Page 4

SECTION 2

Theary of Operation

2.0 SYSTEM BLOCK DIAGRAM

The block diagrams for the 5000IS and the 5000SX are illustrated below. Each IMS system contains a Central Processing Unit (CPU), Memory, Input and Output capability and some type of memory storage (floppy disks or Winchester disks). In addition, the system can be expanded by adding a tape cartridge unit and/or adding multi-processing capabilties with the MPU board.

Figure 2-0
s000IS Bleck Diagram

Figure 2-1
5000SX Block Diagram

IMS International
5000 Series Microcomputers/7.01.83/Page 6

In the system block diagrams, each block connected to the $\mathrm{S}-100$ bus represents an IMS circuit board. The actual bus is contained in the motherboard.

Numbers and abbreviations are used to identify each board.

Board Number	Abbreviation	Description
451	CPU-A	Z-80 Processor Board
645	CPU-B	Z-80 Processor Board
971	ZPU/IO	Z-80 Processor Board
881	8088ZPU	8088 Processor Board (16 bit)
465	64DRAM	Memory-64K
961	256 DRAM	Memory-256K (for 16 bit systems)
444	SPIO	Input/Output (2 serial, 38 -bit parallel ports)
631	SPIO-B	Input/Output (2 serial, 38 -bit parallel ports)
480	4 SIO	Input/Output (4 serial ports)
740	MPU	Z-80 Multiproces sor Board
861	MPU	Z-80 Multiprocessor Board
431	FDC	5" Floppy Disk Drive Controller Board
930	EDC	$5^{\prime \prime}$ or $8^{\prime \prime}$ Floppy Drive Controller Board
820	HDC	Winchester Disk Controller Board
662	VDB	Video Display Board (5000IS only)

The last digit in the board number indicates the revision level. For example, a 444 I/O board is the same as a 440 I/O board except for a few minor changes.

Different combinations of boards may be used to make up a system. The most common are listed below.

CPU	LQ	Memory
451	444	465
645	631	465
645	480	465
		465

2.1 MOTHERBOARD

The motherboard is the board which holds all the other boards. It provides power and communication signals. The protocol used for the signals is based on the S-100/IEEE696 standard. IMS motherboards are not slot dependent; any card can go into any slot. Generally, the boards are spread out to provide ventilation between them. The only reason you might put a card in one place and not another is the cabling considerations; other than that, you may move a card anywhere you want. IMS 5000 systems have two sizes of motherboards; the 5000 IS motherboard has 8 slots and the 5000 SX has 12.

Figure 2-2
Twelve Slot Motherboard

IMS International
5000 Series Microcomputers/7.01.83/Page 8

Figure 2-3
DC Power Supply to Motherboard Connection

2.2 BOARD SHUNTING

Each device in the microcomputer which needs to directly communicate with the Central Processing Unit ($C P U$) is assigned a unique number which is called its I / O address. The CPU can communicate exclusively with one device by using certain instructions which broadcast a specific address over the bus. In IMS systems, selection is done by comparison. Each device looks at the address on the bus and compares it to its address; if they are the same, then that device is selected.

Each board (except the CPU board) has a set of shunts on it to specify its address. Each shunt assigns a specific value to a certain address bit. If the shunt is off, that address bit is assigned a ' 1 ' value; if the shunt is on, the address bit is equal to a ' 0 '.

The MPU (740) board, for example, takes up four I/O address locations on the bus. The boards normally occupy I/O addresses 40 H to 5 FH and E0H to FEH. These locations enable us to include up to 16 boards in the system. Look at the shunt positions JE and the value of each shunt:

Value with
Shunt OFF Value with
IE (and the rest $O N$)

Shunt ON

A7	0	0	80 H	00 H
A6	0	0	40 H	00 H
A5	0	0	20 H	00 H
A4	0	0	10 H	00 H
A3	0	0	08 H	00 H
A2	0	0	04 H	00 H

The values are determined by the address bit they are being compared to. If we look at JE as a binary number, we have:
$\mathrm{A} 7, \mathrm{~A} 6, \mathrm{~A} 5, \mathrm{~A} 4, \mathrm{~A} 3, \mathrm{~A} 2 \rightarrow \mathrm{XXXXXX00B} \rightarrow \mathrm{XXH}$
By setting the bits either high or low, we define our address. A1 and AO are both set to 0 since the board is addressed in units of 4 H .

Examples:

Shunts ($\mathrm{S}=\mathrm{ON}, \mathrm{U}=\mathrm{OEF}$)						Binary Value		Hex Address	
A7,	A6,	A5,	A4,	A3,	A 2	-->XXXX	XX00	-->	XXH
S,	U,	S,	S,	S,	S	0100	0000		40
S,	U,	S,	U,	U,	U	0101	1100		5 C
U,	U,	U,	S,	S,	U	1110	0100		E 4
U,	U,	U,	S,	U,	S	1111	1000		E 8

LQ Addresses Used by IMS Boards

00-0FH	Memory boards
00	First memory board
01-03	Additional memory boards
06,07	881 Processor board
$10 \mathrm{H}-1 \mathrm{FH}$	44x I/O board
	645 Processor board
	971 Processor board
20H-3FH	971 Processor board
	631 I/O board
	480 I/O board
$40 \mathrm{H}-5 \mathrm{FH}$	First 8 MPU boards (740 or 861)
$60 \mathrm{H}-7 \mathrm{FH}$	645 Processor board
	971 Processor board
	881 Processor board
$80-8 \mathrm{EH}$	401 8" Eloppy Disk Drive Controller
	930 8" Eloppy Disk Drive Controller
$90 \mathrm{H}-9 \mathrm{EH}$	Currently unused
A0H-A7H	820-5 5" Winchester Controller
A8H-AFH	820-8 8" Winchester Controller
$\mathrm{BOH}-\mathrm{BFH}$	Reserved for customer use
$\mathrm{COH}-\mathrm{CEH}$	$4315^{\prime \prime}$ Eloppy Disk Drive Controller
	$9305^{\prime \prime}$ Floppy Disk Drive Controller
DOH-DFH	Tape Back-up Unit
EOH-FEH	Additional MPU boards (740 or 861)
	or second $480 \mathrm{I} / \mathrm{O}$ board

Interiupt Vectors

IMS peripherals have the capability of being interrupt driven. This means that the controller will send a request for service directly to the processor instead of waiting for a polling routine to service it. The processor supports 8 interrupt levels, Vector Interrupts 0 to 7 , with VIO having the highest priority. The boards can be shunted to inter rupt the processor at a certain level. The current levels are listed below with their function and the boards that use them.

```
Yector_Interrupt Eunction
    VIO Reserved by CP/M
    VI1* Relative Time Clock (444 and 645 boards)
    Time of Day CLock (645 board)
    VI2** Memory Parity Error (465 board)
    VI3* Serial Communications (444, 480, 631 boards)
    VI4 Hard Disk (820 board)
    VI5 Floppy Disk (401, 431, 930 boards)
    VI6 Reserved for Customer Use
    VI7 Reserved by CP/M
*not used by CP/M operating system.
* not used by TurboDOS
```


2.3 POWER SUPPLY

The IMS 5000IS and 5000SX use a switching power supply with the following specifications:

$$
\begin{array}{ll}
\text { Input: } & 100-130 \mathrm{~V}(60 \mathrm{~Hz}) \text { at } 3 \mathrm{~A} \text { maximum, or } \\
& 200-260 \mathrm{~V}(50 \mathrm{~Hz}) \text { at } 1.5 \mathrm{~A} \text { maximum. }
\end{array}
$$

Qutput Voltage

+5 V	3 A
+12 V	7 A
+8.5 V	10 A
+16 V	4 A
-16 V	0.5 A

Qutput Current

3A
7A
10A
4 A
0.5A

Note: Maximum load is 200 W total.

Figure 2-4
Power Supply Specifications

Figure 2-5
Power Supply

IMS International
5000 Series Microcomputers/7.01.83/Page 12

2.4 CENTRAL PROCESSOR BOARDS

2.4.1 MODEL 451 - 780 PROCESSOR BOARD

GENERAL DESCRIPTION

The Model 451 Processor is the Central Processing Unit (CPU) of the IMS International Series 5000 and 8000 Computer Systems. The Model 451 provides control for the system. The 451 uses a Z-80 microprocessor for control. The Z-80 has priority vectored interrupts and the ability to address 256 I/O addresses, as well as a central processing unit.

The Model 451 processor consists of a single printed circuit board that can occupy any slot in the Series 5000 or 8000 computer systems. It interfaces with the rest of the system through the address, data, and control lines of the S-100 bus system.

The 451 processor board consists of the following functional divisions:

- Z-80 8-bit Microprocessor Device (CPU)
- Priority Vectored Interrupt Circuity
- S-100 Bus Interface

SPECIEICATIONS

- Word Size: \quadAddress Data	16 bits
-	8 bits
- Directly Addressable Memory:	64 Kbytes
- Clock Frequency:	4 MHz
- Circuit Board Dimensions:	$5.25^{\prime \prime} \times 10^{\prime \prime}$
- Power Requirements:	$+8 \mathrm{~V} @ 700 \mathrm{ma}$

Legend

Wait State Select (Location IA)

The position of the shunt at JA indicates the number of states that the processor waits after a memory read operation.

JA

10	No shunts $=$ No memory wait state (normal) Shunt JA $1-2=$ One wait state	
20	Shunt JA 2-3 = Two wait states	
3	0	.

Power On Address Select (Location IB)

1	0	JB		
2	0	16	A15	
3	0	0	15	A14
4	0	14	A13	
5	0	0	13	A12
6	0	12	A11	
7	0	0	11	A10
8	0	10	A9	
0	9	A8		

CPU Clock Select (Location IC)

This shunt is etched to provide the $\mathrm{Z}-80 \mathrm{~A}$ microprocessor with a 4 MHz clock.

Address Mirror Select (Location ID)

When this location is shunted, the Address Mirror duplicates the $1 / O$ address onto the upper 8 address lines.

MWRTIE + ENABLE (Location IE)

JE

2
-
0
A shunt on location JE allows the MWRITE + signal (indicating a write to memory) to go out onto the bus. Normally, this location is unshunted.

IMS International
5000 Series Microcomputers/7.01.83/Page 14

Figure 2-6
Model 451 CPU Board

2.4.2 MODEL 645 - 280 PROCESSOR BOARD

GENERAL DESCRIPTION

The Model 645 Processor Board is the Central Processing Unit (CPU) of the IMS INTERNATIONAL Series 5000 and 8000 Computer Systems. The Model 645 provides control for the system.

The 645 uses a Z-80 microprocessor for control of the system. The Z-80, besides being the central processing unit, has priority vectored interrupts and the ability to address 256 I/O ports.

A chronograph function is provided by the 58167 real-time clock. The circuit includes addressable counters for tenths of seconds through months and a write only register for leap year calculation. A relative time clock function is also available using an 8253 programmable interval timer.

The Model 645 processor consists of a single Printed Circuit Board. It interfaces with the rest of the system through the address, data, and control lines of the S-100 Bus System.

The 645 Processor Board consists of the following function divisions:

- Z-80 8-bit Microprocessor (CPU)
- Priority Vectored Inter rupt Circuitry
- Programmable Interval Timer
- Real-Time Clock
- 2048 by 8 -bit EPROM

SPECIEICATIONS

- Word Size:

Address
Data

- On-Board ROM:
- Directly Addressable Memory:
- Clock Frequency:
- Circuit Board Dimensions:
- Power Requirements:

16 bits
8 bits
2 Kbytes standard. (May be shunt selected to use
4 Kbyte EPROMS)
64 Kbytes
4 MHz
5.25 " 10 "
+8 V @ 900 ma

$14 \mathrm{H}-17 \mathrm{H}$	8253 Programmable Interval Timer
14H	8253A Counter \#0 R/W
15 H	8253 A Counter \#1 R/W
16 H	8253A Counter \#2 R/W
17 H	825 3A Write Mode word
18 H bit 0	2716 or 2732 EPROM Enable and 8253 RTC Interrupt Mask 2716 EPROM Disabled when bit $0=1$
bit 1	8253 A RTC Interrupt enabled when bit $1=1$. NOTE: While EPROM is enabled, the first 4 Kbytes of memory are occupied whether the actual EPROM is 2 or 4 Kbytes .
19H	8253A RTC F/E Reset
1 BH	58167 CLK Interrupt Mask
bit 0	58167 CLK Inter rupt enabled when bit $0=1$.
60H-7EH	58167 Clock Internal Register Select
60 H	R/W Counter - Thousandths of Seconds
61 H	R/W Counter - Hundredths and tenths of seconds
62 H	R/W Counter - Seconds
63 H	R/W Counter - Minutes
64 H	R/W Counter - Hours
65 H	R/W Counter - Day of the Week
66 H	R/W Counter - Day of the Month
67 H	R/W Counter - Months
68 H	R/W Latches - Thousandths of Seconds
69 H	R/W Latches - Hundredths and Tenths of Seconds
6 AH	R/W Latches - Seconds
6 BH	R/W Latches - Minutes
6 CH	R/W Latches - Hours
6 DH	R/W Latches - Day of the Week
6 EH	R/W Latches - Day of the Month
6 FH	R/W Latches - Months
70 H	R/O Interrupt Status Register
71 H	W/O Interrupt Control Register
72H	W/O Counter Reset
73 H	W/O Latch Reset
74H	R/O Status Bit
75H	W/O "GO" Command
76H	W/O Standby Inter rupt
7FH	Test Mode

CONEIGURING THE 645 CPU BOARD

Wait State Selection

The "WAIT" shunt indicates the number of wait states the CPU waits after a memory access. It is presently etched for no wait states.

ROM Location Selection

The "ROM" shunt is etched to indicate that the Initial Program Loader (IPL) boot ROM is located on the 645 board. If this connection is cut, the system assumes that the IPL is on the I/O board.

EPROM Type Selection

The " $16 / 32$ " shunt indicates the type of EPROM used. The " 16 " side is etched to indicate the use of a 27162 Kbyte EPROM. If this connection was cut and the " 32 " side shunted, it indicates that a 27324 K byte EPROM is being used.

Interrupt Level Selection

The "VII, VI7" shunt indicates the inter rupt level for the real-time clock. This is normally etched for level VIl.

Legend

1. YR1, YR2 - + 5 volt regulat or.
2. WAII - Etched for no wait states.
3. ROM - Normally etched for IPL boot PROM on CPU board.
4. IPL (Initial Program Loader) Boot PROM.
5. 16/32 EPROM Tupe Shunt - The " 16 " side is normally etched for a 2716 EPROM.
6. $3 V$ BATTERY (B1) - for Clock/Calendar. The battery maintains time while the system is powered down.
7. VI1, VII - Clock interrupt. Normally etched for VI1.
8. MWRT - Normally not etched. Puts MWRITE + signal on S 100 bus when shunted.

Figure 2-7
Model 645 Z80 Processor Board

2.4.3 MODEL 971 - $Z 80$ PROCESSOR BOARD

GENERAL DESCRIPTION
The 971 Processor Board is the Central Processing Unit (CPU) of IMS International systems. This board controls the rest of the system.

The heart of the 971 board is the $Z-80 \mathrm{~A}$ microprocessor. The $Z-80$ has 158 instructions with a 1 msec instruction cycle time. It has a 16 -bit address bus, which means it can address 64 Kbytes of memory directly, and an 8-bit data bus. It can address 256 bi-directional I/O ports and has priority vectored interrupts.

Interrupts are used so a device can signal the CPU for attention, instead of waiting for the CPU to poll it. There are eight different levels of interrupts, each with a different priority. They are labeled Vector Interrupt 1 to Vector Interrupt 7 (VIO-VI7); VIO has the highest priority.

The 971 has a real-time clock in the form of the 58167 integrated circuit. This chip has addressable real-time counters which count from tenths of seconds to months.

The 971 board has two serial ports which are connected, via cables, to the I/O panel on the back of the machine. These ports are controlled by the 8250 Asynchronous Communications Controller. This chip converts the serial data from the port to parallel data for the system; it also converts parallel data to serial data to be output to the port. These ports use the RS -232 protocol; for some connections, wires may need to be exchanged for proper operation.

This board also contains the IMS Intial Program Loader (IPL) boot EPROM. The program in this EPROM is used when the computer is first turned on or reset.

The Model 971 processor consists of a single Printed Circuit Board that occupies one slot in the Series 5000 or 8000 Computer Systems. It interfaces with the rest of the system through the address, data, and control lines of the S -100 bus.

The 971 Processor Board consists of the following function divisions.

- Z-80A 8-bit Microprocessor (CPU)
- Priority Vectored Interrupt Circuitry
- Two Serial RS-232C Ports
- Real-Time Clock
- $2 \mathrm{~K} / 4 \mathrm{~K} / 8 \mathrm{~K}$ by 8 -bit EPROM

- Word Size: Address	16 bits
D ata	8 bits
On-Board ROM:	2/4/8 Kbytes
Directly Addressable Memory:	64 Kbytes
- Clock Erequency:	4 MHz
- Circuit Board Dimensions:	$5.25^{\prime \prime} \times 10^{\prime \prime}$
- Power Requirements:	+8V@900 ma
	+16V@ 50 ma
	-16V@ 50 ma

CONNECTIONS

The 971 connects to the $S-100$ bus through the gold plated pins on the bottom edge of the board. In addition, there are four connectors on the top edge of the board. In a $5000 \mathrm{SX}, \mathrm{J} 1$ and J2 (the two wide connectors) are connected to channels 1 and 2, respectively, on the I/O panel on the back of the system. In a 5000 IS, J 2 is connected to the serial printer port on the back of the machine, J3 (a smaller connector) is connected to connector $J 5$ on the 662 Video Display board, and J4 is connected to connector J3 on the 861 board if you have a multiuser system.

The cable signals and connections for connecting data terminal equipment to the 971 are shown below. This connection is made via the I/O panel on the back of the machine.

971				
Signal Name	RS-232C Circuit	$\begin{gathered} \mathrm{J} 1 \text { or } \\ \text { Pin } \end{gathered}$		DTE Connector Pin
Transmit Data	BA	3	------	2
Receive Data	BB	5	-----	3
Request to Send	CA	7	------	4
Clear to Send	$C B$	9	------	5
Data Set Ready	CC	11	------	6
Signal Ground	$A B$	13	------	7
Data Terminal Ready	$C D$	14	-	20
Data Carrier Detect	CF	15	----	8
Ring Indicator	CE	18	--	2

Model 971 Serial Port to RS-232C Connector Cable

IMS International

$\begin{aligned} & 18 \mathrm{H} \\ & \text { bit } 0 \end{aligned}$	2716/32/64 EPROM Enable EPROM is disabled when bit $0=1$.	
1 BH	58167 CLK Interrupt Mask	
bit 0	58167 CLK Interrupt is enabled when bit $0=1$.	
$20 \mathrm{H}-27 \mathrm{H}$	Port 08250 ACE Internal Register Select	
20 H	Read Receive buffer/ Write Holding Register ($\mathrm{DLAB}=0$)	
20 H	Write Divisor Latch least significant byte ($\mathrm{DLAB}=1$)	
21 H	R/W Inter rupt Enable Register (L LAB=0)	
21 H	Write Divisor Latch most significant byte	
22 H	Read Interrupt Identification Register	
23 H	R/W Line Control Register	
24 H	R/W Modem Control Register	
25 H	R/W Line Status Register	
26 H	R/W Modem Status Register	
27 H	Nothing	
$28 \mathrm{H}-2 \mathrm{FH}$	Port 18250 ACE Internal Register Select	
28H	Read Receive buffer/ Write Holding Register ($\mathrm{LLAB}=0$)	\cdots
28 H	Write Divisor Latch least significant byte ($\mathrm{LAB}=1$)	
29 H	R/W Inter rupt Enable Register (L L $A B=0$)	
29 H	Write Divisor Latch most significant byte	
2AH	Read Interrupt Identification Register	
2 BH	R/W Line Control Register	
2 CH	R/W Modem Control Register	
2 DH	R/W Line Status Register	
2EH	R/W Modem Status Register	\cdots
2FH	Nothing	
$60 \mathrm{H}-7 \mathrm{FH}$	58167 Clock Internal Register Select	
60 H	R/W Counter - Thousandths of Seconds	
61 H	R/W Counter - Hundredths and Tenths of Seconds	
62 H	R/W Counter - Seconds	
63 H	R/W Counter - Minutes	
64 H	R/W Counter - Hours	
65 H	R/W Counter - Day of the Week	
66 H	R / W Counter - Day of the Month	
67 H	R/W Counter - Month	
68 H	R/W Latches - Thousandths of Seconds	\checkmark
69 H	R/W Latches - Hundredths and Tenths of Seconds	
6 AH	R/W Latches - Seconds	
6 BH	R/W Latches - Minutes	
6 CH	R/W Latches - Hours	
6 DH	R/W Latches - Day of the Week	
6 EH	R/W Latches - Day of the Month	
6 EH	R/W Latches - Month	
70 H	R/O Inter rupt Status Register	
71 H	W/O Inter rupt Control Register	
72 H	W/O Counter Reset	
73 H	W/O Latch Reset	
74 H	R/O Status Bit	
75 H	W/O "GO" Command	
76 H	W/O Standby Interrupt)
7 FH	Test Mode	

IMS International
5000 Series Microcomputers/7.01.83/Page 22

CONE IGURING THE 971

Wait State Select (IA)

This shunt indicates the number of states that the CPU waits after a memory read. Normally, this is etched so there are no wait states. The other shunt location provides for one wait state.

EPROM Type Selection (IC)

This shunt is used for different types of EPROMs. If the 971 has a 2716 (2 K) EPROM, the lower pair is etched. If the 971 has a $2732(4 \mathrm{~K})$ or a 2764 (8 K) EPROM, the upper pair is connected.

Figure 2-8
Model 971 Z-80 Processor Board

2.4.4 MODEL 881-8088 PROCESSOR BOARD

GENERAL DESCRIPTION

The 881 Processor Board is the Central Processing Unit (CPU) of the IMS International 16 -bit systems. The main part of this board is the 8088 microprocessor. The 8088 has an 8 -bit data bus interface with a 16 -bit internal architecture. It has 20 address lines, allowing it to directly address up to 1 megabyte of memory. It also has priority vectored interrupt capability. There are eight levels of vectored inter rupts, VIO to VI7; VIO has the highest priority.

The 881 board has a real-time clock circuit (the 58167 chip), which has counters for tenths of seconds to months.

The Initial Program Loader (IPL) EPROM is located on the 881 board. The program in this EPROM is executed when the system is powered up or reset.

There is also an option for an 8087 Numeric Data Processor. This increases the processor's capability for numerical calculations.

The Model 881 processor consists of a single Printed Circuit Board that normally occupies the first slot in the Series 5000 or 8000 Computer Systems. It interfaces with the rest of the system through the address, data, and control lines of the S-100 Bus System.

The hardware on the 881 Processor Board consists of the following main functions.

- 8088 16-bit Microprocessor (CPU)
- 8087 Numeric Data Processor(Optional)
- 8259 Priority Vectored Interrupt Circuitry
- 58167 Real-Time Clock
- 27324 K by 8 bit EPROM

SPECIEICATIONS

- Word Size: Address 20 bits

Data 16 bits

- On-Board ROM:
- Directly Addressable Memory:

4 K by tes

- Clock Frequency:

1Mbyte

- Circuit Board Dimensions:

4 MHz
$5.25^{\prime \prime} \times 10^{\prime \prime}$

$06 \mathrm{H}-7 \mathrm{FH}$	8259 Command and Status Select
$60 \mathrm{H}-7 \mathrm{FH}$	58167 Clock Internal Register Select
60 H	R/W Counter - Thousandths of seconds
61 H	R/W Counter - Hundredths and tenths of seconds
62 H	R/W Counter - Seconds
63 H	R/W Counter - Minutes
64 H	R/W Counter - Hours
65 H	R/W Counter - Day of the week
66 H	R/W Counter - Day of the month
67 H	R/W Counter - Months
68 H	R/W Latches - Thousandths of seconds
69 H	R/W Latches - Hundredths and tenths of seconds
6 AH	R/W Latches - Seconds
6 BH	R/W Latches - Minutes
6 CH	R/W Latches - Hours
6 DH	R/W Latches - Day of the week
6 EH	R/W Latches - Day of the month
6 FH	R/W Latches - Months
70 H	R/O Interrupt Status Register
71 H	W/O Interrupt Control Register
72 H	W/O Counter Reset
73 H	W/O Latch Reset
74 H	R/O Status Bit
75 H	W/O "GO" Command
76 H	W/O Standby Interrupt
7 FH	Test Mode

CONFIGURING THE 881 BOARD

EPROM Type Selection (IA)

If a 2716 (2 K) EPROM is used in location 5 B , then the upper pair of pins at location JA should be shunted. If the EPROM is a 2732 (4 K) or a 2764 (8 K), the lower pair should be shunted.

Numeric Processor Interrupt Enable (IB)

If the board has an 8087 in location 3 B , location JB should be unshunted. If there is no 8087 , JB should be shunted to mask out the numeric processor interrupt. Normally, JB is etched.

MWRT + Enable (IC)
If this location is shunted, the MWRT+ signal (Memory Write) is sent out to the S-100 bus. Normally, it is unshunted.

Figure 2-9
Model 8818088 Processor Board

2.5.1 MODEL $465-64 K$ DYNAMIC RANDOM ACCESS MEMORY BOARD

The 465 board is the dynamic memory card. It contains 64 K by 9 bits of memory space. The ninth bit in each byte is used as an odd parity check bit. The board can be used as separate 16 K banks.

CONEIGURING THE 465 BOARD

465 boards shipped in IMS systems will normally be configured to the system requirements.

Phantom Line (Jack ID)

The phantom signal is activated when the system is "booting-up". When active, this line disables all memory except the Intial Program Loader EPROM. The phantom line affects memory read operations only, not memory write operations. When location JD is shunted, the phantom line is enabled. This location is etched for use in IMS systems. If this etch is cut, the phantom signal is ignored by the rest of the system.

Enable IO (Jack IB)

When the memory is used in the bank mode or for parity operations, jack JE should be shunted so that the board can respond to I/O commands. Normally, JB is unshunted.

L/Q Address Selection (Jack JC)

The selection of the board's I/O address is done on Jack JC. The jack is labeled 0-7 (top to bottom) for the respective address bits (A0-A7) of the I/O address. A " 1 " is programmed by removing a shunt. Therefore, to program I / O address 0 FH , the top four shunts ($0-3$) would be removed ("1's") and the botrom four shunts (4-7) would be installed (" 0 's"). (Note that the "EN I/O" shunt must be on for the board to respond to the I/O command.) Normally, all positions are shunted.

CPU Selection (Jack IE)

The 8080 shunt (JF) should be installed for systems using 8080 CPUs. For Z- 80 systems, this shunt should be removed.

Eront Panel (Jack IH)

If the 465 board is to be used with an "IMSAI" front panel, the shunt JH must be in the right-most (FP) position. "IMSAI" front panels are mainly used for testing; in normal operation, this shunt should be in the leftmost position.

Memory Speed (Jack IA)

This shunt is dependent on the speed of the memory chips used, anc at should always be in the L position.

Parity Error Interrupt Level (Jack IG)

Jack JG allows selection of eight different responses to a parity error. The selections are:

Shunt Position

VII
VI2
VI3
VI4
VI5
INT
NMI
RDY

Interrupt Selected

VECTORED INTERRUPT 1
VECTORED INTERRUPT 2
VECTORED INTERRUPT 3
VECTORED INTERRUPT 4
VECTORED INTERRUPT 5
INT Line
Non-maskable INT (Z-80 Only)
PRDY Line
(Parity Error Stops CPU)

The state of the parity circuit may be sensed by reading the I / O port on the memory board. If bit 0 is a " 1 ", a parity error has occurred.

Normally, VI2 is shunted for CP/M systems; there are no shunts for TurboDOS.

Normal/Bank Mode (Jack JE)

This shunt should be installed only if the board is to be used in the Bank Switched mode. In the normal mode (unshunted) the board will respond to all addresses from 0000 to EFFF hex.

In the normal mode, with shunt JE removed, the four 16 K memory banks occupy the entire 16 bit address space 0000 through FFFE hex. In this mode, each 16 K bank may be controlled individually by an output to the board's I/O port. A "one" bit disables the associated bank Control is on a bit basis, thus:

Output	
Controlled Memory Bank (hex)	
BIT $0=1$	$0000-3 F F F$
BIT $1=1$	$4000-7 \mathrm{FFF}$
BIT $2=1$	$8000-$ BFFF (omitted in 32 K vers.)
BIT $3=1$	C000-FFFF (omitted in $32 \mathrm{~K} \& 48 \mathrm{~K}$ vers.)

In the Bank Mode (Shunt JE installed) the board responds to a combination of bits. Codes are provided for a variety of configurations defined in the following table. Initially, the board is deselected by the Power On Clear signal. The 465 memory board can be used in a $16 \mathrm{~K}, 32 \mathrm{~K}$ or 48 K bank selection scheme.

BANK MODE TABLE

Qutput Byte.

Memory Mapping

1

2

3
4
5
6
7
8
9
A
B
C
D
E
E

All Banks Deselected
Banks 0 \& 1 Occupy Addresses
8000-EFEF (32 K)
Banks 2 \& 3 Occupy Addresses
$8000-$ EFFE (32 K)
Banks 1, 2, \& 3 Occupy Addresses
4000-EEFE (48 K)
Bank 0 Occupies Addresses
4000-7EFE (16 K)
8000-BEFE (16 K)
Bank 0 Occupies Addresses
Bank 0 Occupies Addresses
Bank 1 Occupies Addresses
Bank 1 Occupies Addresses
Bank 1 Occupies Addresses
Bank 2 Occupies Addresses
C000-FFEF (16 K)
4000-7EEF (16 K)
$8000-\operatorname{BEFE}(16 \mathrm{~K})$
C000-EFFF (16 K)
4000-7FEF (16 K)
8000-BEFF (16 K)
C000-EFFF (16 K)
4000-7FFE (16 K)
$8000-\operatorname{BFFF}(16 \mathrm{~K})$
C000-FFFF (16 K)

Legend

Jack	Description	Standard Configuration
JA	Memory Speed	Normal position is L. On 464 Rev. A
		and previous revs, shunt is in
JB	En I/O	Ope H position.
JC	I/O Selection	All positions shunted
JD	Phantom Line	Shunted (etch)
JE	Normal/Bank Mode	Open
JF	CPUSelection	Open
JG	Parity Interrupt	All open for TurboDOS, VI2 shunted
		for CP/M \& MP/M.
JH	Eront Panel	Left position shunted.

NOTE. Four spare shunts are installed on the upper pins of Jack JG. These pins are all connected by etch and serve as a conventent place to store spare shunts.

mimin!

Figure 2-10
465 64KB Dynamic RAM Board

IMS International
5000 Series Microcomputers/7.01.83/Page 30

2.5.2 MODEL 961-256K DYNAMIC RAM BOARD
 GENERAL DESCRIPIION

The Model 961 Memory Board uses 64 K X 1 bit dynamic memory circuits. Boards are tested and burned in at an elevated temperature under diagnostic test to insure reliable operation.

A standard feature of the 961 board is byte parity checking which can generate an Inter rupt or a Wait signal to the CPU if any single bit memory error occurs. A LED indicator on the board lights up to indicate an error. The CPU can then read the memory board's I/O port to clear the error indicator.

The Model 961 board has a "Phantom Signal" input for systems with ROM memories which use this feature. The phantom signal, when active, disables all memory except the Initial Program Loader ROM.

The 961 board decodes a full 20 -bit address, allowing a system memory address capacity of 1 Megabyte. Switches allow the system to address the board as a 256K memory segment.

CONEIGURING THE 961 BOARD

Memory Board Address Select (IA)

Since there is a system memory capability of 1 megabyte, a 971 memory board can be used to supply a 256 K segment of memory. Shunt JA is the segment select shunt, identifying which addresses the board will respond to.

| JA-1 shunted $=$ addresses | $00000-3$ FFFF |
| :--- | :--- | :--- |
| JA-2 shunted $=$ addresses | $40000-7$ FFEF |
| JA-3 shunted $=$ addresses | $80000-$ BFEFE |
| JA-4 shunted $=$ addresses | C0000-FEFFF |

Parity Error Response Selection (IB)

Shunt JB selects the type of response the CPU will give to a parity error.
JB-1 shunted $=$ VII (Vectored Interrupt 1)
JB-2 shunted $=$ VI2 (Vectored Interrupt 2)
JB-3 shunted $=$ VI3 (Vectored Interrupt 3)
JB-4 shunted $=$ VI4 (Vectored Interrupt 4)
JB-5 shunted $=$ VI5 (Vectored Interrupt 5)
JB-6 shunted $=$ VI6 (Vectored Interrupt 6)
JB-7 shunted $=$ NMI (Non-Maskable Interrupt)
JB-8 shunted $=$ RDY (Hold CPU in a Wait condition)

The state of the parity circuit may be sensed by reading the I / O port on the memory board. If bit 0 contains a " 1 ", a parity error has occurred.

The normal setting depends on the operating system used.

Phantom Signal (JC)

If a shunt is installed on JC, the board will be disabled by an activated Phantom Signal. The Phantom signal is used to disable all memory other than the Initial Program Loader while the system is starting up. In IMS systems, JC is unshunted.

1/O Device Address Select (ID)

The I/O Address for the memory board may be selected by shunts on JD. The shunts are labeled $1-8$ for the respective address bits ($A 0-A 7$) of the I / O address. A " 1 " is programmed by removing a shunt. Normally, all the locations are shunted for a 00 H I/ O address.

$$
\begin{aligned}
& \mathrm{JD}-1=\mathrm{A} 0 \\
& \mathrm{JD}-2=\mathrm{A} 1 \\
& \mathrm{JD}-3=\mathrm{A} 2 \\
& \mathrm{JD}-4=\mathrm{A} 3 \\
& \mathrm{JD}-5=\mathrm{A} 4 \\
& \mathrm{JD}-6=\mathrm{A} 5 \\
& \mathrm{JD}-7=\mathrm{A} 6 \\
& \mathrm{JD}-8=\mathrm{A} 7
\end{aligned}
$$

Figure 2-11 - Model 961256 K Memory Board

IMS International
5000 Series Microcomputers/7.01.83/Page 32

2.6 I/O CONTROLLERS

2.6.1 MODEL 444 I/O BOARD

FUNCTIONA L DESCRIPTION

The Model $444 \mathrm{I} / \mathrm{O}$ Board serves as an integral part of IMS 5000 and 8000 systems by providing timing and I/O interfacing for two serial and three 8 -bit parallel ports.

Timing is provided by the Programmable Interval Timer (PIT). The PIT is a Timer/Counter and functions as a general-purpose timing element that generates relative time interrupts under software control.

The Universal Asynchronous Receiver/Transmitter (UART) interfaces the Z-80 microprocessor to an asynchronous serial data channel. The UART converts input serial data to parallel data to be used by the system. Output data is converted from parallel to serial and placed on the RS -232 port.

The Programmable Peripheral Interface circuit interfaces the Z-80 microprocessor to three 8 -bit parallel ports. These parallel ports are located at the 50 pin I / O connector at the top of the $444 \mathrm{I} / \mathrm{O}$ board. Each line is TTL buffered and provides for termination. This parallel port can be programmed as input, output, or bidirectional I/O under software control.

EEATURES

. 2048 by 8 -bit EPROM

- Programmable Interval Timer/Relative Time Clock
. Two UART's supplying baud rates from 75 to 19.2 K baud.
- Two RS-232 ports with partial modem control
- Three 8 -bit parallel ports

SPECIFICATIONS

- On-Board ROM:
- Serial I/O Ports:
- 8 Bit Parallel Ports:
- Baud Rates:
- Circuit board Dimensions:
- Power Requirements:

```
Up to 4 Kbyte
2
3
75 to 19.2K Baud
5.25" x 10"
(13.3 cm x 25.4 cm)
+16V @ 60 ma
+8V @ 500 ma
-16V@ @ 40 ma
```


Figure 2-12
Model 444 Board Block Diagram

2048×8 EPROM

The 2716 EPROM contains the IMS Initial Program Loader (IPL). Its address space is shunt selectable.

Programmable Interval Timer (8253)

The 8253 functions as a general-purpose, multi-mode timing element that c an be considered as an array of I/O ports.

The 8253 allows the programmer to set up timing loops in the system software to generate accurate time delays under software control. The user may initialize one of three counters with the desired quantity and, upon command, count out the delay and interrupt the CPU when it has completed its tasks. This minimizes software overhead and allows multiple delays that can be easily maintained by assignment of priority levels.

Other functions provided by the 8253 are:
. Relative Time Clock

- Programmable Rate Generator
- Event Counter
- Binary Rate Multiplier
- Digital One-Shot

Universal Asynchronous Receiver/Transmitter (UART)

The 444 has two serial I/O ports. Each port consists of a L'ART and one-third of the programmable interval timer (PIT). The UART is a programmable device used for interfacing an asynchronous serial communication line to the parallel data lines of the microprocessor. It is made up of two separate and independent sections: the receiver and the transmitter.

The receiver accepts the serial data, decodes the control bits and converts the data bits to parallel data. The decode function converts the serial Start, Data, Parity, and Stop bits to parallel information and verifies the proper code transmission by checking parity and the receipt of a valid stop bit.

The transmitter section converts the parallel data into a serial word which contains the data, along with the start, parity, and stop bits.

Both the receiver and transmitter double-buffer data transfers with the processor. The UART may be programmed as follows:

1. The word length may be either $5,6,7$, or 8 bits. (The IMS standard is 8 bits.)
2. Parity generation and checking may be inhibited, and the parity may be odd or even. (No parity standard for IMS systems.)
3. The number of stop bits may be one or two (1 $1 / 2$ when transmitting a 5 -bit code).
(IMS uses 1 stop bit.)
4. The baud rate may be set from 75 to 19.2 K baud. (9600 baud is standard.)
```
XOH Comm 0 Read/Write Control for UART 0
XIH Comm 0 Read/Write Data for UART O
X2H Comm 1 Read/Write Control for UART 1
X3H Comm 1 Read/Write Data for UART 1
X4H Timer 0 Read/Write Data (Baud Clock * 16 Comm 0)
X5H Timer 1 Read/Write Data (Baud Clock * 16 Comm 1)
X6H Timer 2 Read/Write Data (RTC)
X7H Timer Control Write
X8H Interrupt Enable - Request to Send Control
X9H Timer 2 Interrupt Reset (RTC)
XCH Port A Data
XDH Port B Data
XEH Port C Data
XFH Parallel Control Write
```

$X=$ Base Address selected at location JP (If Address $=10 \mathrm{H}$, then $X=1$. If Address $=20 \mathrm{H}$, then $X=2$.) Usually, $X=1$.

SERIAL PORT CONNECTIONS

The two serial ports of the Model $444 \mathrm{I} / \mathrm{O}$ board communicate with peripherals using the RS-232 standard. The RS-232 interface standard is for the interconnection of data processing terminal equipment and data communication equipment. It defines a means of exchanging control signals and serial data between devices, and is of particular importance when each is furnished by a different company.

The 12 pin connector, $J 1$, (top center of the $444 \mathrm{I} / \mathrm{O}$ board) connects the two UART's on the 444 board to the two DB25 female connectors mounted on the I/O panel at the rear of the IMS computer (CH .1 and CH .2). The internal cable connecting this 12 pin connector and the two female DB25 connectors is wired as follows:

444 Board
(Connector J1)

I/O Panel
 (CH. 1 - Console Port)

Pin\#
1
2 RD (Receive Data)

3 RTS (Request to Send) 4
$5 \quad$ GND (Signal Ground) 7

4 CTS (Clear to Send)
Signal
TX (Transmit Data)

Pin \#
(CH. 2 - Printer Port)

6
GND (Signal Ground)
7
8 RTS (Request to Send) 4
7 CTS (Clear to Send) 5
9 RD (Receive Data) 3
10 TX (Transmit Data) 2
Scrial port 1 (CH. 1) is normally connected to the video terminal.
Serial port 2 (CH. 2) is normally connected to the serial printer.

To connect a CRT to the IMS system, you will need a cable with the following connections:
CH.1-Console Port
(DB25 Connector) \quad (DB25 CRT

Figure 2-13 - Computer to CRT Connection (RS232)

Note: Refer to the CRT manual to determine if it is necessary to tie pins 4 and 5 ard pins 6, 8, and 20 together. This requirement will vary from one CRT manufacturer to another.

To connect a printer to the IMS computer, you will need a cable with the connections shown below. This cable is used for CTS T1810/820, Okidata $82,83,84 \mathrm{~A}$, and Epson MX80 and MX100 printers.

(DB25 Connector)

Figure 2-14 - Computer to Printer Connection (RS232)

USING A PARALLEL PRINTER

Using a Centronics Parallel Printer

To use a Centronics parallel printer, shunt locations JB and JC as shown below.

1. Shunt the following pins located at pad JC:

JC

PCO				32 31	DSTA
PC1	3	0	0	30	
	4	0	0	29	
PC2	5	0	0	28	
	6	0	-	27	
PC3	7	0	0	26	
	8	0	-	25	
PC4	9 10	9			IP
PC5	11	0	0	22	
	12	0	0		
PC6	13	0	-	20	ACR
	14	0		19	
PC7	15	0	0	18	
	16	0		17	

2. Remove shunt at pad JB.

JB
10
2 o

A twisted pairs cable with the following connections is needed.

IMS COMPUTER 50 pin IDS Connector

CENTRONICS PRINTER Amphenol 57-30360 Connector

PA7	3	9	DS8
GND	4	27	GND
PA6	5	8	DS7
GND	6	26	GND
PA5	7	7	DS6
GND	8	25	GND
PA4	9	6	LS5
GND	10	24	GND
PA3	11	5	DS4
GND	12	23	GND
PA2	13	4	IS3
GND	14	22	GND
PA1	15	3	LS2
GNL	16	21	GND
PA0	17	2	DS1
GND	18	20	GND
PB3	27	11	BUSY
GND	28	29	GND
PB2	29	12	PE
PB1	31	13	SLCT
PB0	33	32	GAULT
GND	34	17	GND
PC6	37	10	ACK -
GND	38	28	GND
PC4	41	31	IP
GND	42	30	GND
PC0	49	1	DSTA
GND	50	19	GND

PAX	$=$ PARALLEL	PORT A	BITS
PBX	PARALLEL	PORT B	BITS
PCX	$=$ PARALLEL	PORT C	BITS

Figure 2-15
Computer to Centronics Printer Connection (14 Twisted Pairs Cable)

1. Install 16 horizontal shunts at pad JC (all pins shunted).

2. Install a vertical shunt at pad JB.

A cable with the following connections is needed.
PARALLEL NEC SPINWRITER PRINTER CABLE

IMS Computer	NEC Spinwriter Printer
50 pin_IDS Connector	
50 pin IDS Connector	

3	45	Dataline 8
5	43	Dataline 7
7	42	Dataline 6
9	40	Dataline 5
11	33	Dataline 4
13	39	Dataline 3
15	36	Dataline 2
17	37	Dataline 1
19	10	Dataline 12
21	13	Restore
23	17	Carriage Strobe
25	15	Paper Feed Strobe
27	21	Print Wheel Strobe
29	9	Dataline 11
31	1	Dataline 10
33	46	Dataline 9
35	12	Check Status
37	3	Paper Out Status
39	4	Ribbon Out Status
41	27	NOT USED)
43	34	Print Wheel Ready
45	26	Paper Feed Ready
47	28	Carriage Ready
49	Printer Ready	

IMS International
5000 Series Microcomputers/7.01.83/Page 42

CONEIGURING THE 444 I/Q BOARD

Parallel Port A Modes Selection (Location IA)

Shunt location JA indicates the direction of parallel port A.

JA No shunts = input mode

1 o 0 Shunt JA 1-4 = output mode
2 - 0 Shunt JA 2-3 = bi-directional mode

Parallel Port A Driver/Receiver Selection (Location 8A, 10A)

74LS243 non inverting
74LS242 inverting

Parallel Port A Termination Options (Location 9A)

Open $=$ No termination
For Pull-Up, use a Beckman 899-1-R1.0K resistor pack. For Pull-Up/Pull-Down, use a Beckman 899-5-R220/330 resistor pack.

Parallel Port B Mode Select (Location JB)

Shunt location JB indicates the mode of parallel port B.
JB No shunt = input mode
1 - Shunt JB 1-2 = output mode
20

Parallel Port B Driver/Receiver (Location 10B.11A)

74LS243 non inverting
74LS242 inverting

Parallel Port B Termination Options (Location 11B)

Open $=$ No termination
For Pull-Up, use a Beckman 899-1-R1.0K resistor pack.
For Pull-Up/Pull-Down, use a Beckman 899-1-R220/330 resistor pack.

Parallel Port C Direction Select (Location IC)

The direction of each bit in Port C can be individually selected.

JC

1	0	PC0	0	32
2	0		0	31
3	0	$P C 1$	0	30
4	0		0	29
5	0	$P C 2$	0	28
6	0		0	27
7	0	$P C 3$	0	26
8	0		0	25
9	0	$P C 4$	0	24
10	0		0	23
11	0	$P C 5$	0	22
12	0		0	21
13	0	$P C 6$	0	20
14	0		0	19
15	0	$P C 7$	0	18
16	0		0	17

No shunts = Bit unused
Horizontal pair of shunts = input (receiver)
Vertical pair of shunts $=$ output (driver)

Parallel Port C Driver/Receiver (Location 13A)

74 LS 244	non inverting
74 LS 240	inverting

Parallel Port C Termination Options (Location 12A)

Open $=$ no termination
For Pull-Up, insert a Beckman 899-1-R1.0K resistor pack.
For Pull-Up/Pull-Down, insert a Beckman 899-1-R220/330 resistor pack.
EPRQM Selection (Locations ID, IE,IE, IG)
Any etched connections which are not defined in the following diagrams should be cut.

JF

Shunt JD 1-3
Shunt JE 1-2
Shunt JF 1-2
Shunt JF 3-4
Shunt all horizontally at JG

JG

To Use a $27162 \mathrm{~K} \times 8$ EPROM:

JG

A 15	1	\bigcirc	14
A14	2	0	13
A13	3	0	12
A12	4	0	11
Al1	5	o	10
A10	6	-	9
RE	7	0	- 8

To Use a $27324 \mathrm{~K} \times 8$ EPROM:

JD
JE

0 0-0
123

JF

10
 20
 03
 04
 Shunt JD 2-3
 Shunt JE 2-3
 No shunts at JF
 Remove shunts A10 and A11 at JG

JG

A15	1	0	0
A14	2	14	
A13	3	\square	13
A12	4	0	12
A11	5	0	0
A10	6	0	11
RE	7	0	0
A	9	8	

EPROM Address Selection (Location IG)

JG

| A15 | 1 | 0 | 0 | 14 | Shunt OFF $=1$ |
| ---: | :--- | :--- | :--- | :--- | :--- |\quad Shunt ON = 0

EPRQM Enable (RE at Location IG)

JG

A15	1	0	0	14	"RE" unshunted = EPROM Disabled
A14	2	0	0	13	
A13	3	0	0	12	"RE" shunted = EPROM Enabled
A12	4	0	0	11	
A11	5	0	0	10	
A10	6	0	0	9	
RE	7	0	0	8	

JH

$10 \quad 04$ Shunt JH 1-4 = Enable External 2Mhz Clock (75 to 9600 baud rate)
203 Shunt JH 2-3 = Enable on-board 1.2288 Mhz Clock (75 to 19200 baud rate)

Interrupt Options (Locations II, IK, IL, IM, IN)

The installation of a horizontal shunt will select the interrupt level for the functions listed below.
JJ - JN

VI7	1	0	- 16	$\mathrm{JJ}=$	Relative Time Clock (RTC) Inter rupt
VI6	2	0	- 15	$\mathrm{JK}=$	Line 0 Transmit/Receive Inter rupt
V15	3	0	- 14	JL =	Line 1 Transmit/Receive Interrupt
VI4	4	0	- 13	$\mathrm{JM}=$	Parallel Port B Inter rupt
VI3	5	0	- 12	$\mathrm{JN}=$	Parallel Port A Interrupt
VI2	6	0	- 11		
VII	7	0	- 10		
VIO	8	0	- 9		

IO Device Address Selection (Location IP)

Legend

Location and Description
Port Mode Selection

1. JA - Port A Mode Selection
2. JB - Port B Mode Selection
3. JC - Port C Selection

EPROM Selection
4. ID - EPROM Selection
5. JE - EPROM Selection
6. JF - EPROM Selection
7. JC - EPROM Address Selection
8. JH - Optional Oscillat or Enable
9. JJ - Relative Time Clock Interrupt
10. JK - Line 0 Trans/Rec Inter rupt
11. JL - Line 1 Trans/Rec Interrupt
12. JM - Port B Interrupt
13. JN - Port A Interrupt
14. JP - I/O Address Selection

Configuration

For Centronics Printer
Shunt 1-4
Shunt 1-2
PCO vertical shunts (output)
PC4 vertical shunts (output)
PC6 horizontal shunts (input)
For 2716 EPROM
Shunt 3-4
Shunt 2-3
Shunt 3-4
Shunt all except A 10 .
(Starting Address 0400 H)
Shunt 2-3 (75 to 19200 baud)
Shunt VII
Shunt VI3
Shunt VI3
No shunts
No shurts
Shunt all except A4
(Address 10 H)

Figure 2-16 - Model 444 I/O Controller Board

IMS International
5000 Serics Microcomputers/7.01.83/Page 48

2.6.2 MODEL 631 I/O CONTROLLER BOARD

GENERAL DESCRIPTIQN

The Model $631 \mathrm{I} / \mathrm{O}$ Controller has two asynchronous serial ports and three 8-bit parallel ports.

The 8250 Asynchronous Communication Element (ACE) converts input serial data from the RS-232C port to parallel data to be used by the system. Output data is converted from parallel to serial and placed on the RS -232 C port.

The 8255 Programmable Peripheral Interface circuit interfaces the $\mathrm{S}-100$ bus to three 8-bit parallel ports, which are located at J 3 , the 50 pin I / O connector at the top of the card. Each line is TTL buffered and provides for termination networks.

The Model 631 I/O Controller consists of a single printed circuit board which nominally occupies one slot in the Series 5000 or 8000 Computer Systems. Each serial RS-232C port is brought out to a 3 M 26 pin header.

CONEIGURING THE 631 BOARD

I/Q Address Selection (Location IA)

The most significant bits of the I / O addresses for the 631 board are selected at location JA. An address bit is a " 1 " if the shunt is removed, and a " 0 " if a shunt is installed. The correspondence of shunts to address bits is shown below. The normal address is 20 H (A5 unshunted, A6 and A 7 shunted).

J A

I/O Device Address Table

I/O Address(hex) AT A6 A5

$00-13$	0	0	0
$20-33$	0	0	1
$40-53$	0	1	0
$60-73$	0	1	1
$80-93$	1	0	0
A0-B3	1	0	1
CO-D 3	1	1	0
E0-E 3	1	1	1

SERIAL SERIAL PARALLEL PORT 0 PORT 1 PORTS

$00-07$	$08-0 \mathrm{~F}$	$10-13$
$20-27$	$28-2 \mathrm{~F}$	$30-33$
$40-47$	$48-4 \mathrm{~F}$	$50-53$
$60-67$	$68-6 \mathrm{~F}$	$70-73$
$80-87$	$88-8 \mathrm{~F}$	$90-93$
$\mathrm{~A} 0-\mathrm{A} 7$	$\mathrm{~A} 8-\mathrm{AE}$	$\mathrm{B} 0-\mathrm{B} 3$
$\mathrm{C} 0-\mathrm{C} 7$	$\mathrm{C} 8-\mathrm{CF}$	$\mathrm{D} 0-\mathrm{D} 3$
$\mathrm{E} 0-\mathrm{E} 7$	$\mathrm{E} 8-\mathrm{EF}$	$\mathrm{E} 0-\mathrm{F} 3$

Parallel Port C Bit Direction Selection (Location IB)

The direction of each bit in port C can be individually selected.

PC7		JB					
	1	0	0	32			
	2	0	0	31			
PC6	3	0	0	30			
	4	0	0	29	Bit unused -- no shunts.		
PC5	5	0	0	28			
	6	0	0	27	Input -- pair of horizontal shunts	PCx	$0-0$
PC4	7	0	0	26			$0-1$
	8	0	0	25			
PC3	9	0	0	24	Output -- pair of vertical shunts	PCx	
	10	0	0	23			
PC2	11	0	0	22			
	12	0	0	21			
PCl	13	0	0	20			
	14	0	0	19			
$\mathrm{PC0}$	15	0	0	18			
	16	0	0	17			

Port C Driver/Receiver Selection (Iocation $11 C$)

```
74LS240= Inverting
74LS244 = Non Inverting
```


Port C Termination Options (Location 9A)

Open		$=$ No Termination
1 K Pull	Up	Beckman 899-1-R1.0K
220/330	Pull Up/Pull Down	= Beckman 899-5-R220/330

Parallel Port A Mode Selection (Location JC)

Shunt location JC indicates the direction of parallel port A.

JC

1	0	0	6
2	0	0	5
3	0	0	4

NO SHUNTS $=$ Output mode
SHUNT JC $1-6=B i d i r e c t i o n a l \operatorname{mode} c o n t r o l l e d b y ~ P C 7$ SHUNT JC $2-5=$ Bidirectional mode controlled by PC6 SHUNT JC 3-4 = Input mode

Port A Driver/Receiver Selection (Location 9B)

```
8303 = Inverting
8304 = Non-Inverting
```

IMS International

Port A Termination Options (LOC. 10A)

Open	$=$ No Texmination
1 KPull Up	
$220 / 330$ Pull Up/Pull Down	$=$ Beckman 899-1-R1.0K
	$=$ Beckman 899-5-R220/330

Parallel Port B Mode Selection (Location ID)

JD	
10	NO SHUNT
20	SHUNT JD Output Mode
$2-2$	$=$ Input Mode

Port B Driver/Receiver Selection (Location 7C)

```
8303 = Inverting
8304 = Non-Inverting
```


Port B Termination Options (Location 8A)

Open	
1 KPull UP	$=$ No Termination
$220 / 330$ Pull Up/Pull Down	$=$ Beckman 899-1-R1.0K
	$=$ Beckman 899-5-R220/330

Interrupt Level Selection (Locations IE,IG, IH, لI)
JF-J J

VI7	1	0	0	16
VI6	2	0	0	15
VI5	3	0	0	14
VI4	4	0	0	13
VI3	5	0	0	12
VI2	6	0	0	11
VI1	7	0	0	10
VI0	8	0	0	9

Installing a shunt will select the Interrupt level for the ports listed below.
JF = Serial Port O Interrupt
$J G=$ Serial Port 1 Interrupt
$\mathrm{JH}=$ Parallel Port B Interrupt (PCO INTRB)
$J J=P a r a l l e l$ Port A Interrupt (PC3 INTRA)

SERIAL PORT CONNECTIONS

The two connectors, J1 and J2, on the upper edge of the board are connected to the I/O panel on the rear of the computer. If the system has a 645 processor board, J1 and J2 are connected to channels 1 and 2 respectively. Usually Channel 1 is connected to a terminal, and Channel 2 is connected to a serial printer. If the 631 board is used to increase I/O capability in a more recent version JI and J2 are connected the next pair of free channels after the slave channels. The internal cables have the following connections:

Signal Name	RS-232 Circuit	$\begin{gathered} 631 \text { Board } \\ J(x) \\ \text { pin \# } \end{gathered}$	I/O Panel DTE Connector (DB25) pin\#
Transmit Data	BA	3	2
Receive Data	BB	5	3
Request to Send	CA	7	4
Clear to Send	CB	9	5
Data Set Ready	CC	11	6
Signal Ground	AB	13	7
Data Terminal Ready	$C D$	14	20
Data Carrier Detect	CF	15	8
Ring Indicat or	CE	18	2

Figure 2-17 631 Board to I/O Panel Connection (RS-232)

Channel 1 is connected to a CRT using a cable with the following connections:

> CH.1-Console Port (DB25 Connector)
CRT (DB25 Connector)

Figure 2-18 Computer to CRT Connection (RS-232)
Note: Refer to the CRT manual to determine if it is necessary to tie pins 4 and 5 and pins 6,8 , and 20 together. This requirement will vary from one CRT manufacturer to another.

Channel 2 is connected to a serial printer using the cable connections shown below. This cable is used for CTS T1810/820, Okidata $82,83,84 \mathrm{~A}$ and Epson MX80 and MX100 serial printers.
CH. 2 -Printer Port
(DB25 Connector) \quad (DB25 Connector)

Figure 2-19 Computer to Serial Printer Connection (RS-232)

PARALLEL PORT CONNECTIONS

Connector J3 on the upper edge of the 631 is connected to the parallel data port on the I/O panel using a flat ribbon cable. The signals are listed below.

1. PB1	2. GND	27. PC3	28. PC0
3. PC6	4. PC5	29. GND	30.
5. PC4	6. GND	31.	32. GND
7.	8. GND	33. PA3	34. PC2
9. PB2	10. PB7	35. GND	$36 . \mathrm{PAI}$
11. GND	12. PC7	37. PA0	38. GND
13. PB6	14. GND	39. PA2	40. PA4
15. PB4	16. GND	41. GND	42. PA5
17. PB5	18. GND	43. PA6	44. GND
19.	20. GND	45. PAT	46. PBO
21. PB3	22. GND	47. GND	48.
23. GND	24. GND	49.	50. GND
25. GND	26. PCl		

PAx - Parallel Port A bits
PBx - Parallel Port B bits
PCx - Parallel Port C bits
Figure 2-20 631 Parallel Port Pin Listing

Using a NEC Parallel Printer

This cable connects the NEC Printer to the I/O panel, and is made from a 50 conductor ribbon cable with a 3 M socket connector.

L/C Signal	Pin	NEC Signal
PA7	45	Dataline 8
PA6	43	Dataline 7
PA5	42	Dataline
PA4	40	Dataline
PA3	33	Dataline
PA2	39	Dataline 3
PA1	36	Dataline 2
PA0	37	Dataline 1
PB7	10	Dataline 12
PB6	13	Restore
PB5	17	Carriage Strobe
PB4	15	Paper Feed Strobe
PB3	21	Print Wheel Strobe
PB2	9	Dataline 11
PB1	1	Dataline 10
PB0	46	Dataline 9
PC7	12	Check Status
PC6	3	Paper Out Status
PC5	4	Ribbon Out Status
PC4	5	Cover Open
PC3	27	Print Wheel Ready
PC2	34	Paper Feed Ready
PCl	26	Carriage Ready
PC0	28	Printer Ready
GND	24	Select Printer
GND	23	Ribbon Lift

Note: Ground is on pins: $2,6,8,11,14,16,18,20,22,25,29,32,35,38,41,44,47,50$
Figure 2-21 Computer to NEC Printer Connection

The following shunt connections need to be made for use of a NEC printer.
Location JB - all horizontal shunts (Port C - output)
Location JC - no shunt (Port A - output)
Location JD - no shunt (Port B - output)

Using a Centronics Parallel Printer

A cable with the connections shown below is used for connecting a Centronics parallel printer to the I/O panel data channel.

LO Sigpal	Pin	Pin	Centronics Signal
PA7	45	9	DS8
PA6	43	8	DS7
PA5	42	7	DS6
PA4	40	6	DS5
PA3	33	5	DS4
PA2	39	4	DS3
PA1	36	3	DS2
PA0	37	2	DS1
PB3	21	11	Busy
PB2	9	12	PE
PB1	1	13	SLCT
PB0	46	32	Fault
PC6	3	10	ACK -
PC4	5	31	PP-
PC0	28	1	DSTA-

I/O Board Grounds $50,44,41,24,32,23,35,38,22,47,2,6,29$
Centronics Grounds $27,26,25,24,23,22,21,20,29,17,28,30,19$
Figure 2-22 Computer to Centronics Printer Connection

The following locations need to be shunted for use with the Centronics printer.

$$
\begin{aligned}
& \text { Location JB } \begin{aligned}
& 3-30 \\
& 4-29 \text { (PC6 input) } \\
& 15-16 \\
& 17-18 \text { (PC0 output) } \\
& 7-8 \\
& 25-26
\end{aligned} \text { (PC4 output) } \\
& \text { Location JC No shunts. } \\
& \text { Location JD } 1-2
\end{aligned}
$$

Legend

Location	
JA	I/O Address Select
	Normally 20 H .
	(A5 unshunted, A6 and A7 shunted).
JB	Parallel Port C Select
	Normal Shunting: (for Centronics printer)
	PC6 - Horizontal pair
	PC4 - Vertical pais
	PC0 - Vertical pair
JC	Parallel Port A Direction Select
	Normal = no shunt (for Centronics printer)
JD	Parallel Port B Direction Select
	Normal = shunted (for Centronics printer)
JF	Serial channel 0 Transmit/Receive Interrupt
	Normally VI3.
JG	Serial Channel 1 Transmit/Receive Inter rupt
	Normally VI3.
JH	Parallel Port B Interrupt
	Normally unshunted.
JJ	Parallel Port A Interrupt
	Normally unshunted.
J1	Serial Port 0 (usually connected to channel 1)
J2	Serial Port 1 (usually connected to channel 2)
J3	Parallel Port (connected to parallel printer port)

Figure 2-23
Model 631 I/O Controller Board

2.6.3 MODEL 480

The IMS Model 480 has four RS-232 serial ports, controlled by the 8250 Asynchronous Communication Element (ACE).

The Model 480 controller requires one slot in the $\mathrm{S}-100$ bus. Each serial port is brought to a 3 M 26 pin header on the I/O panel on the back of the machine.

CONEIGURING THE 480 BOARD

I/O Address Select (JA)

The most significant bits of the I/O addresses used by the 480 board are selected at location JA. Each shunt indicates the value for one address bit. The relation of shunts to address bits is shown below. If a shunt is removed, the corresponding address bit has a value of " 1 "; if a shunt is installed, the bit has a "0" value. So at location JA, if bits A7, A6 and A5 are unshunted, the 480 board addresses are EOH to FFH . With all the shunts on, the addresses are in the range 00 H to 1 FH .

Normally, A7 and A6 are shunted and A5 is unshunted, resulting in an I/O address of 20 H . If the 4 SIO (480) board is used as an additional I/O board, the address is EOH (all unshunted).

JA

A7 0 -
A6 0 o
A5 0

Baud Clock Option (IB)

With the lower pair shunted, baud rates to 19.2 Kbaud are allowed. With the upper pair shunted, the board uses the 2 MHz base and allows up to 7600 baud to be generated. In normal operation, the lower pair is shunted.

JB

- 0 2MHZ OSC base (from S-100 bus)
- - 0.9152 MHz on board oscillator (normally shunted)

Interrupt Level Selection (locations IC. ID. IE. IE)
Locations JC, JD, JE and JF allow the user to select the interrupt level for each port. In a standard system, VI3 is shunted for all four ports.

JC	JD	JE	JF	
Port 0	Port 1	Port 2	Port 3	
0 -	0 O	0	0 o	VI7
0 -	0 -	0 -	0 -	VI6
0 -	\bigcirc	0 O	0 -	VI5
0 -	0 -	0 O	\bigcirc	VI4
0	0	$0-0$	$0-0$	VI3
0 -	0 -	0 -	0 -	I2
0 -	0 -	0 O	0 -	II
0	\bigcirc	-	0 O	

PORT CONNECTIONS

The four serial ports are connected to four connectors on the I/O panel using cables with the following connections:

Signal	RS-232C Circuit	$\mathbf{4 8 0}$Board Pin Number	I/O Panel Connector Pin Number
Transmit Data	BA	$\mathbf{3}$	$\mathbf{2}$
(Data to Modem)			
Receive Data	BB	5	3
(ata from Modem)			4
Request to Send	CA	7	5
Clear to Send	CB	9	6
Data Set Ready	CC	11	7
Signal Ground	AB	13	20
Data Terminal Ready	CD	14	8
Data Carrier Detect	CF	15	22
Ring Indicator	CE	18	

Legend
Lack

Figure 2-24 Model 480 I/O Controller Board

IMS International
5000 Series Microcomputers/7.01.83/Page 60

2.7 MULTIPROCESSOR BOARDS

2.7.1 MODEL 740 L/Q PROCESSOR BQARD

GENERAL DESCRIPTION
The Model 740 board is used to add multi-user capability to an IMS system. It contains a processor, memory, and serial and parallel I/O ports. One 740 board is used for each additional user.

The 740 I/O Processor board consists of a single printed circuit board that occupies one slot in the Series 5000 or 8000 Computer Systems. Each serial RS232 C port is brought out to a 3 M 26 -pin header on the I/O panel.

SPECIEICATIONS

Processor:	4MHz Z-80A CPU
Instruction set:	158 instructions
PROM Capacity:	2 K bytes
PROM Type:	2716 or equivalent
RAM Capacity:	64 K bytes with Parity
RAM Type:	4164 Dynamic
Serial Channels:	Two Asynchronous or Synchronous channels with modem control
Serial Channel Type:	Z-80A SIO/0 (or Z-80A DART Asynchronous Only)
Parallel Channel:	Ten bit-programmable parallel I / O lines compatible with Bell 801 Automatic Calling Unit
Parallel Channel Type:	Z-80A PIO
Parallel Channel:	24 bit programmable parallel I/O lines compatible with the $\mathrm{S}-100$ bus for Host interface
Parallel Channel Type:	8255 A PPI
Interval Timers:	4 Timers; two for baud rate control and two cascaded for programmable time interval
Timer Type:	Z-80A CTC
Vectored Interrupts:	Internally prioritized vector interrupt structure of the Z-80A microprocessor
Power Requirements:	+8volts @ 800 ma +16 volts @ 80 ma -16 volts @ 70 ma
Operating Environment:	$0-55 \mathrm{deg} \mathrm{C}$

I/O Address Selection (Location JE)
The most significant bits of the I / O addresses used by the 740 board are defined at location JE. The correspondence between shunts and address bits are shown below. If a shunt is installed, the address bits are shown below. If a shunt is installed, the address bit has a ' 0 ' value; if the shunt is removed, the address bit has a value of ' 1 '. The example below results in I/O addresses of 40 H to 43 H .

	JE			
A7	1	0	0	12
A6	2	0	0	11
A5	3	0	0	10
A4	4	0	0	9
A3	5	0	0	8
A2	6	0	0	7

A7	A6	A5	A4	A3	A2	A1	A0
0	1	0	0	0	0	X	X

Address Byte - 40 H shown

Example shown places 740 board at I/C addresses 40 H - 43 H .

When a system has more than one 740 board, each must have a different address, as shown below:

Board	1/O.Address	Board	1/Q Address
1st	40 H	9 th	EOH
2nd	44 H	10 th	E4ri
3 ra	48 H	11 th	E8H
4 th	4 CH	12 th	ECH
5 th	50 F .	13 th	FOH
6th	54 H	14 th	E 4 H
7th	58 H	15 th	F8H
8 th	5 CH	16 th	EGH

Port A Receive and Transmit Baud Clock Selection (IA)

The upper two pairs of pins at location JA allow the user to choose the source of the "Receive" clock for port A. The lower two pairs select the source of the transmit clock signal. Normally, they are shunted as shown below.

JA

108 RxCA- from Z-80A CTC T0 (This connection is etched.)
2007 RxCA- from RS-232 Interface pin 17 (Signal DD - Receive Clock)
$30-6 \mathrm{TxCA}-\mathrm{from} \mathrm{Z}-80 \mathrm{~A}$ CTC TO (This connection requires a shunt.)
40 o 5 TxCA- from RS-232 Interface pin 15 (Signal DB - Transmit Clock)

IMS International
5000 Series Microcomputers/7.01.83/Page 62

Port B Receive and Transmit Baud Clock Selections (IB)

Location JB defines the source of port B 's receive and transmit clocks. The normal connect is etched and shown below.

1	JB		
2	0	0	6

S-100 Reset Disable (Location JD)

A shunt in this location disables the RESET signal going to the 8255 chip. This location is only shunted during testing; normally it is unshunted.

The two leftmost connectors on the upper edge of the board, J1 and J2, are connected to the I/O panel using a cable with the following connections.

	RS-232C	J1 or J2 Connector		
Cincuit Number			\quad	I/O Panel
:---:				
Channel				
Signal Name				

J1 and J2 ca the first 740 board are usually connected to channels 3 and 4 , respectively. The next 740 is usually connected to channels 5 and 6 , the third 740 to channels 7 and 8 , etc.

PARALLEL PORT CONNECTIONS

Connector J 3 on the right side of the upper edge of the board is a 10 bit parallel port compatible with the Bell 801 Automatic Calling Unit. It is conrected to the $1 / O$ panel by using a cable with the following connections:

Signal Name	ACU Circuit	740 Board $J 3$ Connector Pin Number	I/C Panel Channel Pin Number
Frame ground	EGD	1	1
Sigral Ground	SGD	13	7
Digit Present	DPR	3	2
Abandon Call-Retry	ACR	5	3
Call Request	CRQ	7	4
Present Next Digit	PND	9	5
Power Indication	PWI	11	6
Data Set Status	DSS	25	13
Number Bit 1	NB1	2	14
Number Bit 2	NB2	4	15
Number Bit 4	NB4	6	16
Number Bit 8	NB8	8	17
Data Line Occupied	DLO	18	22

IMS International
5000 Series Microcomputers/7.01.83/Page 64

Legend

$$
\begin{array}{ll}
\text { Jack } & \\
\text { JA } & \begin{array}{l}
\text { Recerved and Transmit Baud Clock Selection } \\
\text { Normally } 1-8 \text { and } 3-6 \text { are shunted }
\end{array} \\
\text { JB } & \begin{array}{l}
\text { Recerve and Transmit Baud Clock Selections } \\
\text { Normally 1-6 is etched }
\end{array} \\
\text { JD } & \begin{array}{l}
\text { Reset Disable Shunt } \\
\text { Normally unshunted }
\end{array} \\
\text { JE } & \text { I/O Device Address Selection } \\
\text { JF } & \begin{array}{l}
\text { Interrupt level for the 8255. Normally unshunted. } \\
\text { J1, J2 }
\end{array} \\
\text { RS }-232 \text { C Parallel Port Connectors }
\end{array}
$$

Figure 2-25 Model 740 Multiprocessor Board

IMS International
5000 Series Microcomputers/7.01.83/Page 65

2.7.2 MODEL 861 MULTIPROCESSOR UNIT

GENERAL DESCRIPTION

The Model 861 MPU is a single board computer with a processor, memory, and two serial I / O ports. It is used to add multi-user capability to the system.

The Model 861 MPU consists of a single printed circuit board that occupies one slot in the Series 5000 or 8000 Computer Systems. Each serial RS-232C port is brought out to a 3 M 26 -pin header on the $1 / O$ panel.

SPECIFICATIONS

Processor:	$4 \mathrm{MHz} \mathrm{Z-80A} \mathrm{CPU}$
Instruction set:	158 instructions
PROM Capacity:	2 K bytes
PROM Type:	2716 or equivalent
RAM Capacity:	64 K bytes with Parity
RAM Type:	4164 Dynamic
Serial Channels:	Two asynchronous or synchronous channels with modem control
Setial Channel Type:	Z-80A SIO/0 (or Z-80A DART asynchronous only)
Parallel Channel:	24 bit programmable parallel I/O lines compatible with the S-100 bus for host interface
Parallel Channel Type:	8255A PPI
Interval Timers:	4 timers; two for baud rate control and two cascaded for programmable time interval
Timer Type:	Z-80A CTC
Vectored Inter rupts:	Internally prioritized vector interrupt structure of the Z-80A microprocessor
Power Requirements:	$\begin{aligned} & +8 \text { volts @ } 800 \mathrm{ma} \\ & +16 \text { volts @ } \\ & -16 \text { volts @ } \\ & \hline-10 \mathrm{ma} \end{aligned}$
Operating Environment	0-55 deg C

CONEIGURING THE 861 BQARD

I/O Address Selection (Location JE)
The most significant bits of the I / O addresses used by the 861 board are assigned values according to the shunts at location JE. If a shunt is on, the corresponding address bit has a ' 0 ' value; if a shunt is off, the bit has a ' 1 ' value.

	JE			
A7	1	0	0	12
A6	2	0	0	11
A5	3	0	0	10
A4	4	0	0	9
A3	5	0	0	8
A2	6	0	0	7

Each 861 board is assigned a unique address according to the table below:

Board	I/O Address		Board	IO Address	
	Hex	Binary		Hex	Binary
1st	40 H	010000 XX	9 th	E0H	111000 XX
2nc	44 H	010001 XX	10 th	E4H	111001XX
3 rd	48 H	010010 XX	11 th	E8H	111010 XX
4 th	4 CH	010011 XX	12 th	ECH	111011XX
5 th	50 H	010100 XX	13 th	FOH	111100 XX
6 th	54 H	010101 XX	14 th	F4H	111101 XX
7 th	58 H	010110 XX	15 th	F8H	111110 XX
8 th	5 CH	010111 XX	16 th	ECH	111111 XX

Interrupt Level Selection (Location JE)

The inter rupt level for the 861 board can be selected by a shunt on JF.

	JF			
VI0	1	0	0	16
VII	2	0	0	15
VI2	3	0	0	14
VI3	4	0	0	13
VI4	5	0	0	12
VI5	6	0	0	11
VI6	7	0	0	10
VI7	8	0	0	9

Port A Receive and Transmit Baud Clock Selection (IA)

The shunts at location JA indicate the source of the Receive and Transmit clocks for the serial ports. Normally, pins 1 and 16 are shunted, pins 3 and 14 are shunted, and pins 6 and 11 are shunted together.

Port B Receive Clock Selections (IB)

The shunt at JB indicates the source of the 'receive' clock for port B. Normally, pins 1 and 4 are shunted.

```
    JB
10 04 RxDB from RS-232 (Signal BB - Receive Data)
20 03 RxDB from RS-422 (Signal RD - Receive Data)
```


Reset Disable (Location JD)

A shunt at location JD disables the RESET signal to the 861 board. JD is only shunted during testing; normally there is no shunt.

```
    JD
10 Normal mode - shunt off.
20 Local 861 test mode - shunt on.
```


PORT CONNECTIONS

The 861 is connected to the I/O panel using a flat ribbon cable. The pins and signals are given below:

Signal	RS-232C Circuit	Pin	
Name			
Signal Ground	AB	7	
Transmit Data	BA	2	(Data to MCDEM)
Receive Data	BB	3	(Data from MODEM)
Request To Send	CA	4	
Clear To Send	CB	5	
Data Terminal Ready	CD	20	
Data Car rier Detect	CF	8	
Transmit Clock	DB	15	(Clock From MODEM)
Receive Clock	DD	17	(Clock Erom MODEM)
	RS-422		
Receive Data	RD-A'	11	
	RD-B'	23	
Receive Timing	RT-A'	9	
	RT-	21	
Send Data	SD-A	13	
Terminal Timing	SD-B	25	
	TT-A	12	

In a $5000 I S$, the first 861 has connector $J 3$ connected to connector $J 4$ on the 971 processor board and J2 on the 861 is connected to channel 2 on the I/O panel. Any additional 861 boards are connected in the following manner:

Board
Second 861
Third 861
Fourth 861

11
Ch. 3
Ch. 5
Ch. 7

12
Ch. 4
Ch. 6
Ch. 8

In a 5000 SX system, the 861 boards have the following connections to the I/O panel:

Board	11	12
First 861	Ch. 3	Ch. 4
Second 861	Ch. 5	Ch. 6
Third 861	Ch. 7	Ch. 8
Fourth 861	Ch. 9	Ch. 10
Fifth 861	Ch. 11	Ch. 12
Sixth 861	Ch. 13	Ch. 14
Seventh 861	Ch. 15	Ch. 16
Eighth 861	Ch. 17	Ch. 18

The odd numbered channels are usually used for terminals and the even numbered channels are used for printers.

Legend

JA	Port A Clock Selection (Normally $1-16,3-14$ and $6-11$ are shunted.)
JB	Port B Clock Selection (Normally $1-4$ are shunted.)
JD	Resct Disable (Normally unshunted.)
JE	I/O Address Selection
JF	Interrupt Level Selection
J1	Serial Port 0
J2	Serial Port 1

Figure 2-26
Model 861 Multiprocessor Board

2.8 FLOPPY DISK CONTROLLER BOARDS

2.8.1 MODEL 431 ELOPPY DISK CONTROLLER BOARD

The Industrial Micro Systems Model 431 floppy disk controller is used with 5-1/4" floppy drives.

The 431 is based on the NEC uPD765 floppy disk controller chip, providing single and double density and single and double sided operation. An 8257 provides DMA operation. The 431 board can control up to four floppy drives.

CONEIGURING THE 431 BOARD

L/Q Address Selection (Location IA)
The values of the most significant bits of the 431's I/O addresses are indicated by the shunts at location JA. A shunt on the right (as in A7 below) gives a " 1 " value to the address bit; a shunt to the left (as in A5 below) gives a " 0 " value to that bit. The addresses selected by the shunts below are C 0 H to CFH , which is the normal setting.

JA

Vectored Interrupt Level Selection (Location IB)

The JB area is used to select one of the eight vectored interrupt levels to be triggered when a floppy disk controller interrupt or a delay complete inter rupt occur, depending upon the status of the interrupt mask port (OUT CCH). The pins $0-7$ correspond to inter rupt levels VIO-VI7, respectively.

Double Sided Drive Selection (Location IC)

The JC shunt location is used to indicate single sided (no shunt) or double sided (shunt installed) operation.

I/O ADDRESSES EOR THE 431 BOARD

C0H-C8H - 8257	DMA Controller	
C0H -	Channel 0	DMARegister
C1H -	Channel 0	Terminal Count Register
C2H -	Channel 1	DMA Register
C3H -	Channel 11	Terminal Count Register
C4H -	Channel 2	DMA Register
C5H -	Channel 2	Terminal Count Register
C6H -	Channel 3	DMA Register
C7H -	Channel 3	Terminal Count Register
C8H - DMA Status and Commands		

will be reserved for hard disk controller will be reserved for 2nd hard disk contraller

C 8 H - DMA Status and Commands

C9H - NOT USED
IN $\quad \mathrm{CAH}-\quad \mathrm{NOT}$ USED
OUT CAH - Drive select port. Data bits 0 and 1 binary weighted select one of four disk drives. All subsequent status and commands will pertain to the selected drive. These bits are latched on the board.

IN CBH - NOT USED
OUT CBH - Precisely the same significance as OUT 8AH described above.
IN CCH - Board status port. This port provides status information on the drive select, 765 inter rupt and drive select delay function as follows:

DATA BIT 0 - A logical one indicates tht a 765 interrupt has occurred.

DATA BIT 1 \& 2 - Binary weighted to provide the information on the drive 1,2 , or 3 is selected.

DATA BITS 3-6 - NOT USED
DATA BIT 7 - A logical one indicates that the floppy disk drive motors are on and the motor-control time-out is complete. If the motors are off or the time-out is not complete, this bit will be zero. Reading this port will start the motors and reset the thirty (30) second motor-off time-out to zero. After approximately one second this delay conplete bit will be set to a logical one.

OUT CCH - Board interrupt mask. The data bits will provide information as follows:

DATA BIT 0 - A one in this position will enable a 765 interrupt on the selected vectored interrupt line. A zero disables the interrupt.

DATA BIT 1 - A one in this position enables a delay complete interrupt on the selected vectored interrupt line. Both bit 0 and 1 are latched on the board.

DATA BITS 2-7 - NOT USED
IN $\quad \mathrm{CDH} \&$
OUT CDH - Precisely the same significance as IN 8 CH and OUT 8 CH as described above.

IN \quad CEH - Read main status register of 765 floppy disk controller.
bit $0=1$ Drive 0 is busy doing seek operation
bit $1=1$ Drive 1 is busy doing seek operation
bit $2=1$ Drive 2 is busy doing seek operation
bit $3=1$ Drive 3 is busy doing seek operation
IMS International
5000 Series Microcomputers/7.0 1.83/Page 72
bit $4=1$ Floppy disk controller is busy processing a read or write command
bit 5 Set during the execution phase of non DMA operation only
bit 6 Set if data transfer is to be from data register to processor
bit 7 Set if data register is ready to send or receive data to or from processor

IN CFH - Read disk data from data register in 765 Floppy Controller Chip.
OUT CFH - Write data for disk into data register on 765 Floppy Controller Chip.

CONNECTIONS

The Jl connector on the 431 board is connected to the floppy disk drive with a ribbon cable. If there is more than one drive, this cable is daisy-chained to the other drive(s). The pin assignments for the ribbon cable are Shugart compatible. They are listed below. The pin numbers are the same for the board and the drive because a flat ribbon cable is used.

Pin	Signal
2	SPARE
4	IN USE
6	SEL 4
8	INDX
10	SEL 1
12	SEL 2
14	SEL 3
16	MON
18	IN
20	STP
22	WDAT
24	WGAT
26	TRACK0
28	WPROT
30	RDATA
32	SDE1
34	SEPDAT
36	-
38	-
40	-
42	-
44	-
46	-
48	-
50	-
DD	GROUND

MODEL $4315^{\prime \prime}$ ELOPPY DISK DRIVE CONTROLLER BOARD

Legend

JA Address Selection. Normally A7 and A6 are shunted to the right and $A 5$ and A4 are shunted to the left.

JB Vector Interrupt Level selection.

JC Double-sided Drive selection.
J1 Connector to floppy disk drive.

Figure 2-27
431 5" Floppy Disk Drive Controller Board

IM:S International
5000 Series Microcomputers/7.01.83/Page 74

2.8.2 MODEL 930 ELOPPY DISK CONTROLLER BQARD

The 930 board is a floppy disk drive controller which can be used with either 5" or $8^{\prime \prime}$ disk drives. A single 930 board can control up to four drives of the same size.

CONEIGURING THE 930 BOARD

Processor/DMA Control (Location IA)

During a DMA cycle, bus control is transferred between the 930 Floppy Disk Controller and the CPU. IMS uses two different methods of transfer, dependent on the CPU. The shunt block JA should have pins 2 and 3 (lower 2 pins) connected when the system CPU is an IMS Model 451; pins 1 and 2 (upper 2 pins) should be connected for all other IMS CPU's.

JA

10
Shunt for 644, etc., CPU
2 。
Shunt for 451 CPU
30

Vectored Interrupt Level Selection (Location IB)

The Vectored Interrupt Level of the 930 is etched to be VI5. This etch may be cut and, by means of a shunt, the 930 may be connected to any input, VIl through VI6.

	VII	VI2	VI3	VI4	VI5	VI6
JB	0	0	0	0	0	0
	0	0	0	0	0	0

10 Base Address Selection (SW1-6)

Switch 6 on the package at location 1 D assigns the I / O addresses for the 930 board. This switch should be on for $8^{\prime \prime}$ floppy disk drives, resulting in $1 / O$ address 80 H to 8 EH . For a system with $5^{\prime \prime}$ floppy disk drives, switch 6 should be off, resulting in I/O addresses COH to CFH.
OFF ON

SW1-6

Program/Drives 10 Switches (SW1)

Switches 1 through 4 on the DIP at location $1 D$ can be read by the program and are used to identify the type of drive connected to the controller. Switch 2 is used by the hardware and must be "on" for 8 inch drives. Switches 1 through 4 are read by the program as Data Bits 7 through 4; an "on" switch is read as a zero. The settings for all the switches in the package are shown below for different types of drives.

SH1
Drive Type SW1-1 SW1-2 SW1-3 SW1-4 SW1-5 SW1-6 SW1-7 SW1-8

1	$8^{\prime \prime}$ SS	on	on	on	off	off	on	off
2	$8^{\prime \prime}$ DS	on	on	off	on	off	on	off
3	$5^{\prime \prime}$ DS 96 TPI	on	off	on	off	on	off	off
4	$5^{\prime \prime}$ DS 48 TPI	on	off	off	on	on	off	off
5	$5^{\prime \prime}$ SS 48 TPI	on	off	off	off	off	off	off
$6^{\prime \prime}$	$5^{\prime \prime}$ DS ?? TPI	on	off	on	on	on	off	off
on								

(SS - single sided, DS - double sided, TPI = tracks per inch)

* Controllers shipped loose will be set in this configuration. This setting allows 48 or 96 TPI and slow step rates.

CONNECTIONS

If the 930 board is used to control $5^{\prime \prime}$ disk drives, the J 2 connector is connected to the disk drives in a daisy-chain. If the system contains 8 " drives, then the Il connector is daisy-chained to the drives. The signals for each connection are listed below. Flat ribbon cables are used to make the connection.

Pin	$\begin{gathered} 8 \text { Inch Drives } \\ \text { J1 } \\ \text { (50 Pins) } \end{gathered}$	$\begin{gathered} 5 \text { Inch Drives } \\ \text { J2 } \\ \text { (34 Pins) } \end{gathered}$
2	low write current	--
4	--	--
6	--	select 4
8	--	index
10	2 sided	select 1
12	disk change	select 2
14	side 1	select 3
16	--	motor on
18	head load	in
20	index	step
22	--	write data
24	--	write gate
26	select 1	track 0
28	select 2	read data
30	select 3	side 1
32	select 4	--
34	in	--
36	step	
38	write data	
40	write gate	
42	track 0	
44	write protected	
46	read data	
48	--	
50	--	
A.ll odd pins	ground	ground

Legend

JA Processor/DMA Control.
JB Vector Interrupt Level Selection.
SW1 Drive Identification S witches.
J2 Connect or to Floppy Disk Drives.

Figure 2-28
930 Floppy Disk Drive Controller Board

2.9 51/4" WINCHESTER DISK DRIVE SUBSYSTEM

GENERAL DESCRIPTION

The disk subsystem consists of the controller, up to 4 disk units, a disk interface card for each disk unit, together with power and control cables, as shown below:

The function of the controller is to transfer data between the bus and the disk units. The interface card provides sector signals to the controller and also decodes the drive select signals.

DISKDRIVE

The disk unit is a $51 / 4$ inch Winchester Technology sealed fixed disk drive with typical specifications as follows:

Environment:	Ambient Temperature $\quad 10^{\circ}$ to $50^{\circ} \mathrm{F}$.
	Relative Humidity 10% to 80% (non-cor
Power:	$+12 \mathrm{VDC} \pm 10 \%, 2 \mathrm{~A}$ typical, (4A during motor
	$+5 \mathrm{VDC} \pm 5 \%, 0.65 \mathrm{~A}$ typical
Unformatted Capacity:	
	10.4 kilobytes per track
Transfer Rate:	5.0 Megabits per second
Access Time:	18 milliseconds track to track seek (including set tling time)
	90 milliseconds average seek
	215 milliseconds maximum seek
	8.3 milliseconds average rotational latency

CONNECTIONS

The connector on the upper edge of the 821 controller card is daisy-chained with all of the interface cards. Each interface card is attached to a Winchester drive.

CQNEIGURING THE 821 WINCHESTER CONTROLLER BOARD

Address Selection (Pad ADRS)

The upper pair is connected for $5^{\prime \prime}$ drives, setting the board address to $A 0 H$. This connection is etched.

The lower pair is shunted for $8^{\prime \prime}$ drives, which sets the board address to A 8 H .

ADRS

0

ECC Test Option (Pad ECC)
Normally, the upper pair is shunted. The lower pair is shunted for use with the TESTECC command in the test program.

Interrupt Level Selection (Pad INT)
Installation of a shunt selects the interrupt level for the controller. Normally, VI4 is etched.

MODEL 821 WINCHESTER CONTROLLER BOARD STANDARD CONEIGURATIQN

Legend

ADRS	$5^{\prime \prime}$ etched	Sets board address to A 0 H
	8" shunt upper pair	Sets board address to A8H
ECC	RUN	Used with TESTECC command in test program. Normally in run position.
INT	etched	Set to VI4 interrupt.

Figure 2-29
Model 821 Winchester Controller Board

IMS International
5000 Series Microcomputers $/ 7.01 .83 /$ Page 81

CONEIGURING THE 900 WINCHESTER INTEREACE BOARD

Drive Select (Location (A)

A shunt is installed to indicate the drive number. 1 is shunted for drive \#1, 2 is shunted for drive \#2, etc.

Normally, there is only one Winchester drive, so 1 would be shunted.

Terminating Resistor Pack (Location RP2)

The 760-5-R220/330 resistor pack is removed on every interface card except the one for the last drive. Normally, there is only one Winchester drive so the resistor pack would stay in.

Figure 2-30
Winchester Interface Card

IMS International
5000 Series Microcomputers/7.01.83/Page 82

The 662 Video Display Board is used in the IMS 5000IS. It receives data from the keyboard and transmits it to the processor. It also controls the CRT, with the ability to emulate four current CRT terminals. It has an RS $\mathbf{- 2 3 2}$ serial port and an RS-422 port.

SPECIEICATIONS

Processor:	8085 microprocessor
ROM Capacity:	8 Kbytes
ROM Type:	2732 or equivalent EPROM
RAM Capacity:	8 Kbytes
RAM Type:	$61162 \mathrm{~K} \times 8$ static RAMs
Keyboard Interface:	Asynchronous, TTL level serial inpur, 50-9600 baud, +5 V mark bit, sync bit, 8 data bits and 1 stop bit. Single line active high output for controlling bell on keyboard.
Monitor Interface:	TTL level interface signals with either active-high or active-low sync signals available. Horizontal sweep rate is 19.4 KHz at 60 Hz and 18 KHz at 50 Hz . Video band width should be $>20 \mathrm{MHz}$.
Screen Eormat:	24 lines (plus status line) by 80 columns, 7×8 characters with 2 descenders in a 9×12 matrix.
Power Requirements:	+5 volts @ 800ma +12 volts © 30 ma -12 volts@ 20 ma
Operating Environment	0-55 deg. C.

CONEIGURING THE 662 BOARD

RS-232/RS-422 Mode Selection (IA)

Shunt JA indicates whether RS-232 or RS-422 protocol is being used. RS-422 is used when the 662 board is used in a terminal which is far away from the computer. In a 5000 IS system, this location always has the upper pair shunted.

JA
$19 \quad \mathrm{RS}-232 \mathrm{C}-$ shunt $1-2$
20 RS-422 -- shunt 2-3
30

IMS International

Vertical SYNC Polarity (IC)

The shunt on JC selects the polarity of the vertical SYNC signal to the monitor. If pins 1 and 2 are shunted, VSYNC has minus polarity; if 2 and 3 are shunted, VSYNC has plus polarity.

	$J C$
1	0
2	0
3	0

Hosizontal SYNC Polarity (IB)

The shunt on JB selects the polarity of the horizontal SYNC signal. Pins 1 and 2 shunted indicates minus polarity; if 2 and 3 are shunted, HSYNC has plus polarity.

	$J B$
1	0
2	0
3	0

Character Generator Selection (ID)

This location indicates the type of EPROM used for character generation. Normally, the shunts are set up for a 2716 EPROM (2 Kbytes).

JD		
10	2716 EPROM --	1-2 shunted
20		4-5 shunted
30		
40	2732 EPROM --	1-2 shunted
50		3-4 shunted

SW-1 to SW-4)

The first four switches on the switch package SW1 select the baud rate used when the system is first powered up. The baud rate is selected in the following manner:

SWITCH \#

Baud	$\mathbf{1}$	$\mathbf{2}$	$\boldsymbol{3}$	$\boldsymbol{4}$
19,200	ON	ON	ON	ON
9,600	OFF	ON	ON	ON
4,800	ON	OFF	ON	ON
2,400	OFF	OFF	ON	ON
1,800	ON	ON	OFF	ON
1,200	OFF	ON	OFE	ON
600	ON	OFF	OFF	ON
300	OFF	OFF	OFF	ON
150	ON	ON	ON	OFE
110	OFF	ON	ON	OFE

Cursor Options (SW1 - 5, 6)

The cursor's characteristics at power-up are determined by switches 5 and 6 of switch pack SWl. If switch \#5 is on, the cursor is a reverse block, if switch \#5 is off, the cursor is an underline. When switch \#6 is on, the cursor blinks, otherwise it is solid.

Status Line Selection (SW1-7)

If switch \#7 of SW1 is on, then the status line will be displayed at power-up as the 25 th line on the screen. If switch $\# 7$ is off, the status line will be displayed at power-up, but the depression of any key will cause it to disappear.

Erequency Selection (SW1-8)

Switch \#8 of SW1 is on for 60 Hz machines and off for 50 Hz machines.

Iransmission Characteristics (SW2-1, $2,3,4,5,6$)

The first six switches on switch pack SW2 select the transmission characteristics for the console.

Switch \#1	ON - A 7 bit word is transmitted OFF - An 8 bit word is transmitted
Switch \#2	ON - No modem control OFF - Modem control
S witch \#3	ON - 1 stop bit OFF - 2 stop bits
Switch \#4	ON - No parity OFF - Enable parity
Switch \#5	ON - Odd parity OFF Even parity
Switch \#6	CN - Mark (Stick Parity). This switch indicates that the parity bit will always be the same value. This switch should be ON only when switch \#1 is ON and switch \#4 is ON.

Power-Up Operating Mode Selection (SW1-7,8)

Switches 7 and 8 on $S W 2$ select the operating characteristics used at power-up. If switch \#7 is ON, the console will be in the IMS "Native" mode at power-up. If switch \#7 is OFF, the console emulates the Televideo 950 terminal at power-up. Switch \#8 selects full or half duplex transmission: on for full duplex and off for half duplex.

The switch settings for SW1 and SW2 are summarized below:

Figure 2-31
662 Board Switch Settings

IMS International
5000 Series Microcomputers/7.01.83/Page 86

Keyboard Connection (Jll

Connector Jl on the upper edge of the 662 board is connected to the detachable keyboard via a plug on the bottom of the 5000IS. The signals are as follows:

```
pin 1 .... +12 volts
pin 2 .... +12 volts
pin 3 . . . GND
pin 4 . . . Eell output
pin 5 . . . . GND
pin 6 . . . . Keyboard serial data
```


Modem Connection (I2)

This connection is not used in the 50001 l .

Monitor_Connector (J3)

Connector $J 3$ on the lower edge of the 662 board is connectec to the keytoard interface card (890) which is connected to the CRT monitor board. J3 has the following pin assignments:

```
pin 1 . . . GND
pin 2 . . . . Vertical S YNC
pin 3 .... VIDEO
pin 4 . . . . GND
pin 5 . . . Horizontal SYNC
pin 6 . . . . NOT USED
pin 7 . . . . Keyboard serial data
pin 8 . . . . Keyboard bell output
pin 9 ....NOT USED
pin 10 . . . . GND
```


Power Supply Connection (I4)

Connector J4 on the lower right edge of the 662 board is connected to connector J 5 on the power supply. The pin assignments for J4 are listed below:

ITL Compatible Communications Connector (15)

Connector J 5 is located in the center of the lower edge of the 662 board. It is connected to socket J3 on the 971 processor board. The pin assignments are below:

```
pin 1 . . . . Receive Data
pin 2 . . . . GND
pin 3 . . . Transmit Data
```


Graphics Adapter Connection (16)

Connector J6 connects to the IMS graphics board to add graphic capability to the console. The pin assignments are listed below:

```
pin 1 . . . . GOSC+
pin 2 .... GND
pin 3 .... VSYNC+
pin 4 .... GND
pin 5 . . . HS YNC+
pin 6 . . . . GND
pin 7 . . . . HGLT +
pin 8 . . . . GND
pin 9 . . . EHSYNC-
pin 10 . . . . GND
pin 11 . . . . CHDOTS+
pin 12 . . . . GND
pin 13 . . . . DISPG+
pin 14 . . . . GND
pin 15 . . . . KBUZ-
pin 16 . . . . KSD+
```


Reset Connector (I7)

This connector, located near the center of the upper edge of the board, can be used to reset the 662 board. It is normally not used.

```
pin 1 . . . . External Reset In
pin 2 . . . . GND
```


Light Pen Connector (18)

The 662 board can be connected to a light pen via connector J 8 . Normally, no connection is made. The pin assignments are as follows:

```
pin 1 . . . +5 volts
pin 2 .... GND
pin 3 . . . . Pen down (-)
pin 4 . . . . Light strobe (-)
```


Legend

1.	J1	Keyboard Connector
2.	J2	Modem Connector
3.	$J 3$	Monitor Connector
4.	$J 4$	Power Connector
5.	$J 5$	TTL Compatible Communications Connect or
6.	J6	Graphics Adapter Connect or
7.	J7	Reset Connector
8.	J8	Light Pen Connect or
9.	JA	RS-232C/RS -422 Nocie Selection Shunt
10.	JB	Horizontal SYNC Polarity Selectıor. Srunt
11.	JC	Vertical SYNC Polarity Selection Shunt
12.	JD	Character Generator Selection
13.	Contrast Control Potentiometer	
14.	SW2	Terminal parameter switch 1
15.	SW1	Terminal parameter switch 2

Figure 2-32
Model 662 Video Display Board

SECTION 3

Disk Driyes and Tape Cartridge Unit

INTRODUCTION

This section will cover the standard shunting, cabling and basic specifications of the floppy, Winchester, and tape drives used in the 8000 Series systems.

The floppy drives used in 5000 Series systems are TEAC $51 / 4^{\prime \prime}$ half width drives. The Winchester drive used is one of the Rodime RO-200 Series $5^{\prime \prime}$ drives. You may also have a stand-alone tape cartridge unit, which is manufactured by Digidata.

3.0 TEACED-55 ELOPPY DISK DRIVE

The TEAC floppy disk drives are storage devices which use a standard removable $51 / 4 "$ flexible diskette as a storage medium.

They are capable of supporting either single density format (FM), or doubledensity format (MFM) and double sided recording. The TEAC ED-55F has 96 tracks per inch; the ED-55B has 48 tracks per inch.

Figure 3-1 TEAC 5 $\mathbf{K}^{\prime \prime}$ Floppy Disk Drive

IMS International
5000 Series Microcomputers/7.01.83/Page 90

Physical Dimensions

Width	$5.75^{\prime \prime}$ nominal
Height	$1.63^{\prime \prime}$
Depth	$7.99^{\prime \prime}$
Weight	3.31 lbs.

Electrical Specifications

```
+12V DC power
+5V DC power
```


Environmental Conditions

Operating temperature
Storage temperature Wet bulb temperature Operating humidity

Operational Characteristics

Number of tracks/disk

Track to track access time
Head settling time
Average access time
(including set tling time)
Motor start time
Disk rotational speed
Instantaneous speed variation
$+12 \mathrm{~V} \pm 5 \%, 0.25 \mathrm{~A}$ typical
$+5 \mathrm{~V} \pm 5 \%, 0.5 \mathrm{~A}$ typical
$4^{\circ} \mathrm{C}$ to $46^{\circ} \mathrm{C}\left(40^{\circ} \mathrm{F}\right.$ to $\left.115^{\circ} \mathrm{F}\right)$
$-22^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}\left(-8^{\circ} \mathrm{F}\right.$ to $\left.140^{\circ} \mathrm{F}\right)$
$29^{\circ} \mathrm{C}\left(84^{\circ} \mathrm{F}\right)$ maximum
20% to 80% non-condensing

160
less than 3 ms
less than 15 ms
94 ms
less than 400 ms
300 rpm
less than $\pm 1.5 \%$

Recording Method
Data Transfer rate (K bits/sec)
125
160
2,961 (side 1) 5,922 (side 1)
5,922 (side 1) 5,922 (side 1)

3.125	6.25
500	1,000
2.048	4.096
327.68	655.36

Tracks/disk
Innermost track bit density (bpi)
Innermost track flux density (frpi)
Data Capacity
Unformatted
K bytes/track
K bytes/disk
Formatted (16 sectors/track)
K bytes/track
K bytes/disk
327.68
655.36

Reliability

Mean time between failures (MTBE)	10,000 power on hours or more (for typical usage)
Mean time to repair (MTTR)	30 minutes
Error Rates	
\quad Soft read error	1 per 10^{9} bits (up to 2 retries)
\quad Hard read error	1 per $10^{12^{6} \text { bits }}$
Seek error	1 per 10^{6} seeks

Shunting

On the side of the floppy disk drive is a circuit board (Figure 3-2) which is supplied by TEAC. The shunt options on the board are explained below.

Drive Select
There should be a shunt that indicates the drive number, DS0, DS1, DS2 or DS3. If your system has two drives, one would have a shunt on DS0 and the other would have a shunt at DS1. If the system has only one floppy disk drive, DSO would be shunted.

	MX
0 -	DS3
- 0	DS2
	HM
0 -	DS 1
0	DS0
\square	HM

Terminating Resistor

If your system has more than one drive, the $330 \Omega \pm 5 \%$ terminating resistor should be removed from all but the last drive. For example, if your system had only one drive, the terminating resistor would stay in. If your system had two drives, the terminating resistor would be removed from the drive shunted as DSO and kept in the drive shunted DS 1 .

Track Density

The number of tracks per inch is indicated on the DS shunt. For 96 t.p.i. drives, the WT side is hunted; for 48 t .p.i. drives, the ST side is shunted.

IMS International
5000 Series Microcomputer $/ 7.01 .83 /$ Page 93

Legend

1. Drive Select Shunt
2. Terminatıng Resistor
3. Track Density Shunt

Figure 3-2
TEAC Floppy Disk Drive Board

Cabling

The I/O lines are 'daisy-chained' from one floppy drive to another, using a flat ribbon cable. Each drive has a separate cable going to the power supply. The cabling is shown below.

Figure 3-3
TEAC Floppy Disk Drive Cable Diagram

3.1
 RODIME RO 200 SERIES WINCHESTERS

The Rodime RO 200 series of $5 \frac{1}{4}$ inch (130 mm) Winchester disk drives provide fast access data storage for use with small business computers, terminals and microprocessor based systems. There are four models in the series, RO 201, RO 202, RO 203, and RO 204, containing $1,2,3$ and 4 magnetic disks respectively and ranging in total data storage from 6 to 24 megabytes.

A summary of the important performance parameters is given below:

Figure 3-4 Rodime 54" Winchester Disk Drive

SPECIEICATIONS

Models: RO201, 202, 203, 204

Number of Disks	1,2,3,4
Number of Heads	2,4,6,8
Unformatted capacity	6.67, 13.33, 20.00, 26.67 Mbytes
Formatted capacity (typical)	
per drive (M bytes)	5.89, 11.79, 17.69, 23.59 Mbytes
per track (bytes)	9216 bytes
per sector (bytes)	512 bytes
Sectors per track	18
Cylinders	320
Transfer rate	$5 \mathrm{Mbits} / \mathrm{second}$
Seek times (ms) (including settling)	
track to track	18 ms
average	90 ms
maximum	215 ms
A verage latency	8.3 ms
Flux reversals per inch	8900 (max)
Tracks per inch	356
Rotational speed	3600 mpm
Power requirements	$5 \mathrm{~V} D C(\pm 5 \%)$ at 0.65 A typical $12 \mathrm{~V} D \mathrm{C}(\pm 10 \%)$ at 2 A typical (4A motor start)
Dimensions	$8.00 \times 5.75 \times 3.25$ inches
Operating Environment	$\begin{aligned} & 10^{\circ} \mathrm{C} \text { to } 50^{\circ} \mathrm{C} \\ & 10 \% \mathrm{RH} \text { to } 85 \% \mathrm{RH} \\ & \text { (non-condersing) } \end{aligned}$
Vibration	
Operating	.006 inch displ., $5-60 \mathrm{~Hz}$ 1 g pk accin., $60-500 \mathrm{~Hz}$
Non-operating	.040 inch displ., $5-30 \mathrm{~Hz}$ 2 g pk accin., $30-500 \mathrm{~Hz}$

Shock
Operating and non-operating
(without transit lock)

Non-operating
(with transit lock)

Interface
Indicators

3 g pk , less than 10 ms max 2 per second.

20 g pk , less than 20 ms , max 1 per 10 second

ST506 variant of SA 1000
Two red LED's fixed to the master electronics board are visible through the facia when they are illuminated.

The "Power-On" LED is on when the drive is READY with no error condition present. It is also used to indicate fault conditions in the drive.

The "Select" LED is on when the drive is selected by the host provided the "Power-On" LED is on.

The "Power-On" LED is positioned closest to the center of the facia. Note that this LED will not come on if the condition $2.5 .1,5 \mathrm{~V}$ risetime, is not met since the microprocessor will not receive an initial reset.

The "Power-On" LED is used to flash error messages should certain fault conditions arise on the drive. A four bit binary code is used (long flash $=$ logical 1 , short flash $=\operatorname{logical} 0$) with the most significant bit occuring first:
e.g. short, short, long, short $=2(0010)$

Fault codes 1, 2, 3, 5, 9, 10 and 11 are monitored during the initial power-up sequence of the drive. The remaining codes, namely 4, 6 and 7 are constantly monitored during normal operation. All fault codes are latched by the processor and the drive must be restarted to clear. Codes 3, 4, 10 and 11 generate an interface WRITE FAULT as do those fault conditions leading to code 7 . If one of these codes if flashed, maintenance personnel should be called.

Cabling

The Winchester drive itself is connected to the power supply and a small interface card. The interface card is connected to the 821-5 Winchester Controller Board. If you had more than one Winchester drive, the I/O cable would be dansy-chaned between the interface cards for each Winchester.

Figure 3-5
Rodime Winchester Drive Cable Diagram

IMS International
5000 Sertes Microcomputers/7.01.83/Page 100

3.2 TAPE CARTRIDGE SYSTEM

GENERAL DESCRIPIION

The IMS Tape Cartridge System permits the transfer of programs and data files from a Winchester disk to an easy-to-handle tape cartridge, facilitating off premises data storage and shipping. Data written to the tape is written in 8208 byte blocks, allowing a full 8 K data record with a 16 byte file control block. This configuration allows 13.4 megabytes of formatted storage on a 450 foot, $1 / 4 \mathrm{l}$ tape. Data is written sequentially on each track, and the tape is rewound and the next track selected as each track is filled. The tape cartridge system consists of an S-100 controller (DS100) board, a 6400 BPI cartridge tape drive, power supply, and cables.

Figure 3-6
Stand-Alone Tape Cartridge System

SPECIEICATIONS

Physical Dimensions

Width	$6.95^{\prime \prime} \max$
Height	$4.25^{\prime \prime} \max$
Depth	$7.25^{\prime \prime} \max$
Weight	$3.2 \mathrm{lbs} . \max$

Qperating Environment
$+5^{\circ}$ to $+45^{\circ} \mathrm{C}$, cartridge limited
20% to 80% relative humidity, non-condensing

Non-Qperating Environment
-30° to $+60^{\circ} \mathrm{C}$, hardware
$+5^{\circ}$ to $45^{\circ} \mathrm{C}$, cartridge storage
-40° to $+45^{\circ} \mathrm{C}$, cartridge storage
20% to 80% relative humidy, non-condensing

Performance Specifications
Cartridge type Per ANSIX3.55-1977 Specifications, 300 or 450 ft . leng th
Recording density 6400 bpi (MFM)
Tape speed, synchronous 30 ips forward and reverse
Tape speed, search $90 \mathrm{ips} \pm 5 \%$, long term forward and reverse
Speed variation,
synchronous
(maximum) $\quad \pm 3 \%$ long term (including cartridge effects)
$+7 \%$ short term (including cartridge effects)
(measured per ANSI/ECMA/ISO standards)
Rewind time 60 s nominal for 450^{\prime} leng th of tape
Disk rotational speed $\quad 300 \mathrm{rpm}$
Instantaneous speed variation - less than $\pm 1.5 \%$

CONTROLLER

The cartridge tape controller has a 4 switch package which selects the I/O port address. The values for different settings are shown below. The standard I/O address used by IMS is D0-DF.

Switch Number	Switch Yalue	LO Addresses	SW1.	SW2	SW\%	SW4
SW1	80	OO- OF	OFF	OFF	OFF	OFF
SW2	40	10-1F	OFF	OFF	OFF	ON
SW3	20	20-2F	OFF	OFE	ON	OFF
SW4	10	30-3F	OFF	OFF	ON	ON
		40-4F	OFF	ON	OFF	OFF
		50-5F	OFF	ON	OFF	ON
		60-6F	OFF	ON	ON	OFF
		70-7F	OFF	ON	ON	ON
		80-8F	ON	OEF	OFF	OFF
		$90-9 \mathrm{~F}$	ON	OFF	OFE	ON
		A0 - AF	ON	OFF	ON	OFF
		B0 - BF	ON	OFF	ON	ON
		$\mathrm{C} 0-\mathrm{CF}$	ON	ON	OFF	OFF
Standard IMS	Setting	$\longrightarrow \mathrm{D} 0-\mathrm{DF}$	ON	ON	OFF	ON
		E0 - EF	ON	ON	ON	OFE
		F0-FF	ON	ON	ON	ON

Figure 3-7
Switch Settings - Cartridge Tape Controller

Figure 3-8
Tape Cartridge System Controller Board

RECORDING DETAILS

The cartridge tape unit records data serially on a track that stretches from one end of the tape to the other. When this track is filled up, the tape rewinds and the next track is filled in the same manner. There are four tracks, resulting in 17.3 megabytes of unformatted storage (14.3 Mb formatted) on a 450 foot tape. The format used is shown below.

Figure 3-9
Record Format - Cartridge Tape Controller

Cabling

The tape cartridge unit is connected to the computer via a ribbon cable which is attached to the back of the drive, and connected to the controller board which is inserted into the motherboard. The proper orientation of the ribbon cable is shown below.

Figure 3-10
Tape Cartridge Data Cable Orientation

SECTION 4

Memory, Floppy Drive and Winchester Drive Tests

4.0 64K MEMORY TEST PROGRAM

The memory of the 8-bit IMS system is normally found in 64 K units. There is one memory board used in the $C P / M$ operating system. The multi-user operating system can have up to 1764 K memory units distributed between all the users.

The program tests an area of memory bounded by the top of the test program and the bottom of the operating system. These bounds are displayed when the program signs on.

To start the program, type TESTMEMR 〈cr〉. The following display will appear.

> TSTMEMR Rev 1.X
> Memory test utility
> Beginning address 05A9
> Ending address Dxxx

The program will then run through 6 subtests. The terminal will display the current status of the test by printing dots on the screen. The six subtests are:

1. High bit test. This will write an FEH pattern to the memory locations. This will test for a data bit shorted to low.
2. Low bit test. This will write a 00 pattern to the memory locations. This will test for a data bit shorted to high level.
3. Checkerboard bit test 1. This routine will write a 55 H pattern (0101 0101) to the memory locations. This will test for a short between data bits.
4. Checkerboard bit test 2. This routine will write an AAH pattern (1010 1010) to the memory locations. This will test for a short between data bits.
5. Walking bit right test. This routine will write a changing pattern to the memory locations. This pattern starts as (10000000), then (01000000), then (00100000), and so on. The high bit walks from left to right. This pattern continues to all the tested locations.
6. Walking bit left test. This routine is similar to test 5 except that the high bit moves from right to left.

ERROR MESSAGES DEVELOPED BY THE MEMORY TEST PROGRAM

The memory test program will report any errors discovered in the operation of the tests. The errors will be reported in the following manner.

Memory error-Address:xxyx Expected value:xx Observed value:xx
The difference between the observed and the expected value will tell you which bit is bad at the indicated address. Since the memory chips are all 1 bit wide, this will also indicate which chip is bad. If errors are displayed, the memory board should be exchanged for another.

ELOPPY SUBSYSTEM

The floppy subsystem is made up of two units: the floppy controller board which resides in the $S-100$ bus and the floppy disk drives, which can number up to four in a system. The power is supplied by DC cables which connect to all of the drives and by an $A C$ cable which is used only on the $8^{\prime \prime}$ full width drives. The data is transferred by a ribbon cable that connects all of the floppy drives to the controller board.

The $8^{\prime \prime}$ drives are available in two different sizes, either full width or half width. The width describes the physical space that the drive takes up in the system. The full width drive is approximately 4.5 inches wide, while the half width is 2.25 inches wide. The full width drives use the AC line voltage to power the spindle motor. The half width drives use 24 V DC for the spindle motor. The same test software can be used for both the full and the half width drives. Some specific parmeters can change, however. See Appendix A for more details.

The $8^{\prime \prime}$ drives are also available in single or double sided models. The number of sides is determined by the number of read-write heads in the drive. A double sided drive can read both single and double sided diskettes, while a single sided drive can only read single sided diskettes. Disk errors can occur if a double sided diskette is placed in a single sided drive. The diskette label will generally indicate which type of diskette it is.

The $5^{\prime \prime}$ drives are also available in full and half width sizes. All of the $5^{\prime \prime}$ drives are DC powered. The $5^{\prime \prime}$ drives can be either single or double sided. Another option found only on the $5^{\prime \prime}$ drives is the availability of quad density format. Density refers to the amount of data that can be contained on the diskette. The 8" floppy drives can read and write in either single or double density, with double density being the norm. The $5^{\prime \prime}$ floppy drives can read either single or double density. These drives are known as 48 tpi drives. An available option on the $5^{\prime \prime}$ system is a quad drive (also known as 96 tpi drive). This drive will write twice as much data on the diskette as the 48 tpi drive. In running the test software, the type of drive (48 or 96 tpi) must be specified.

IHE ELOPPY TEST PROGRAM

To start the floppy drive test, type TSTF930 <cr>, and the following menu will appear.

```
IMS International
PROG. ID: TSTF930 Floppy Disk Test Utility Rev 1.1
**5" Floppies**
For 5", }48\mathrm{ T.P.I. drive(s), type: 1
For 5", 96 T.P.I. drive(s), type: 2
**8" Eloppies**
Eor 8", 48 T.P.I. drive(s), type: 3
?
```

IMS International
5000 Series Microcomputers/7.01.83/Page 108

The drive size can be found by looking at the IMS model number. The first digit indicates the size of the drive(s) (5 or 8 inch). The fourth spot indicates the density; a ' Q ' indicates a 96 t.p.i. drive and a ' D ' is for a 48 t.p.i. drive. (Further details about the IMS model number can be found in Appendix E.)

After the drive size is selected, the following command screen will appear.

COMMAND SCREEN

DESCRIPTION OF COMMAND SCREEN

Heading:
PROG ID:
Drive: Currently selected drive
Track:

Head:
Sector: Currenty selected sector
Density: Currently selected density

N\#:	Current value for bytes/sector code (see Command Descriptions)
EOT:	Number of sectors per track
SC:	Number of sectors per track for the format command
SRT:	Drive step rate (see Appendix A for values)
GPL1:	R/W gap length between data field and next ID field
GPL2:	Format gap length between data field and next ID field
HLT:	Head load time in ms.
DTL:	Data length in Read/write table
DMA controller:	defaults to 8257 chip
Read address:	Location in system RAM for disks reads
Write address:	Location in system RAM for disks writes
Free memory:	Available system RAM between top of program and bottom of operating system.
Radix:	Numeric values will be displayed in either decimal or hexadecimal form.
Soft errors:	4 separate erfor buffers, one for each drive which will save any soft errors found. Drive 0 errors are on the left; then Drive 1,2,3.
Hard errors:	4 separate error buffers, one for each drive which will save any hard errors found. Drive 0 errors are on the left, then Drive 1 errors, Drive 2 errors, etc.
FDC base:	Display base address of controller board, 80 H for $8^{\prime \prime}, \mathrm{COH}$ for 5".
Seek verify:	Determine if track verification is to be performed after a track or recal command.

The following commands are used to test the floppy drive subsystem.

Command

DISKTEST
[all]

DRIVE [x]

EOT [x]

ERROR $\begin{aligned} & \text { [dr\#, S/H,er\#] } \\ & {[\mathrm{clear}]}\end{aligned}$ [abort on/off]

HELP

N\# [x]

QUIT

SRT [x]

VERIFY

Description

DISKTEST will write and verify random data, in all available formats on the selected drive.

DRIVE will select the currently active drive ($0,1,2,3$).

EOT will set the end of track value.

ERROR can be used to view any errors that may have occurred in the running of one of the tests.

HELP will display the available commands. If the . MSG file was present on the disk, command descriptions are available.

N\# will set the number of bytes per sector in the R / W and format tables.
N\#=0 for 128 bytes per sector
$\mathrm{N} \#=1$ for 256 bytes per sector
$\mathrm{N} \#=25$ for 512 bytes per sector $\mathrm{N} \#=3$ for 1024 bytes per sector

QUIT will exit a program and perform a warm start.

SRT will select the step rate for the drives. See Appendix A for correct values.

VERIFY is used to check the formatting on a diskette.

To thoroughly test your floppy disk drives, follow this procedure:

1. Insert a scratch diskette (one with no important data) into the drive.
2. Set the step rate to the proper value (found in Appendix A) by typing SRT value <cr>.
3. Type DISKTEST ALL <cr> and press any key to start the test.
4. N\# will increment. Stop the test by pressing the Escape key after N \# has gone past 3 and returned to 0 .
5. Check the error count. Look at the part of the command screen that looks like this:

$$
\begin{array}{llllll}
\text { Soft Errors: } & 00 & 00 & 00 & 00 \\
\text { Hard Errors: } & 00 & 00 & 00 & 00
\end{array}
$$

The leftmost pairs of digits hold the soft and hard error counts for drive 0 ; the next set is for drive 1 , etc. If these locations are all equal to zero after the test, there are no floppy drive errors. If there are errors on only one drive, see if the scratch diskette is bad by repeating the test with that diskette in another drive. If there is no problem with the scratch diskette, there is probably a hardware error.

The key to determining the fault in the floppy subsystem is to correctly interpret the error messages. The errors can be viewed by typing E drv\# S/H, where drv\# stands for the drive that the errors occur on, and S / H is S for soft errors and H for hard errors. The error message will give a description of the error and a possible cause.

A. Errors Developed in Disktest - POSSIBLE CAUSES

(1) SRT has not been set to correct value. (See Appendix A.) (2) Incorrect power is being supplied to the drives. (See Appendix A.) (3) Loose or bad power or data cabling. (4) Bad diskette placed in drive. Replace diskette. (5) If errors occur on only one drive, switch diskettes between drives. (6) If errors occur on only one drive, possible bad drive. (7) If errors occur on both drives, possible bad controller.

WINCHESTER SUBSYSTEM

The Winchester subsystem is made up of three main units, those being the Winchester controller card, which resides in the S-100 bus, the interface card, which plugs onto the back of the drive, and the drive itself. The power is supplied by a DC cable and by an $A C$ cable for the $8^{\prime \prime}$ drives. The data is transferred by a ribbon cable that connects between the controller card and the interface card.

The data is held on the drive in 512 byte sectors. There are a number of sectors per track. The track specifies a head and a cylinder location. The drives can have as many as eight heads and 512 cylinders. This would give a total of 4096 tracks. The error message given by the operating system defines the bad location in terms of a track and a sector location.

Start the Winchester test by typing TSTW <cr>. The system will respond with the following message:

PROG ID: TSTW Wi			inchester Test Utility	
5" Winchesters				
For	5	megabyte drive,	type:	1
For	6	megabyte drive,	type:	2
For	7	megabyte drive,	type:	3
For	11	megabyte drive,	type:	4
For	12	megabyte drive,	type:	5
For	15	megabyte drive,	type:	6
For	24	megabyte drive,	type:	7
8" Winchesters				
For	10	megabyte drive,	type:	8
For	20	megabyte drive,	type:	9
For	40	megabyte drive,	type:	10
For	80	megabyte drive,	type:	11
?				

Type the number that corresponds to the size of the drive to be tested, followed by a car riage return. The test program will then initialize the drive and display the command screen.

DESCRIPTION OF THE COMMAND SCREEN

The command screen will display the current active location. Unit describes the active drive, normally 0 , although this number can range up to 3 on systems tht contain multiple Winchesters. Head describes the current active head. This value can range from 0 to 7 on the various Winchester drives (see Appendix B for drive information). Cylinder shows the currently selected cylinder location. Sector shows the currently selected sector location. The Status byte gives information regarding the current controllex status (see Appendix B for information on the status byte).

The address information given defines the location in system RAM where the data transfer is to take place. The Read address is where the sector data being read is transferred to. The Write address is the source of the data that is written to the sector. The Free memory lists the available RAM locations above the program and includes the read/write address.

The Format byte dislays the current byte being used for the format and the verify commands. It defaults to E5H which is the normal format byte used on all of the drives. Seck verify can be enabled or disabled by the user ty using the SEEKVER command. Normally, it is on. When it is on, the controller will verify the current location with the header on the sector. If there is not a match, as exror is generated and the seek would be aborted. The Drive capacity is displayed to enable the user to verify that the correct choice was made during initialization. The Error counter will keep a running count of any errors found during execution of the program. This area will be explored in the next section.

IMS International
5000 Series Microcomputers/7.01.83/Page 114

COMMANDS USED

CYLINDER	UNIT	QUIT	ERROR
READ	VERIFY	SEEKVER	HELP
SECTOR	HEAD	WRITE*	FORMAT*

- - DESTRUCTIVE

The commands listed above are of two distinct types, destructive and non-destructive. Care must be taken when using this program so that you do not destroy customer data areas if it is unnecessary to do so. The destructive commands are to be used only if there is no way to save the customer's data. The destructive commands are shown with an asterisk (*) in the above list.

One of the most useful commands for the novice user of this program is the HELP command. Contained within the program are descriptions of all of the commands. Typing HELP will display all of these commands. You can then type the command that you are interested in to view an explanation and syntax of the command in question.

COMMAND DESCRIPTION

The commands will now be discused in more detail with the required syntax, and the normal use of the commands. Those that are considered destructive will be preceded with an asterisk (*).

NOTE: COMMANDS PRECEDED WITH AN ASTERISK (*) ARE DESTRUCTIVE!

Command Description

CYLINDER [cylinder number] CYLINDER is used to set the current cylinder position ERROR

HEAD [head number]

HELP HELP can be used to view a description of any available command.

IMS International
5000 Series Microcomputers/7.01.83/Page 115

QUIT	QUIT will perform a warm start.
READ [loop] [count]	READ will read in the current sector to the read buffer.
SECTOR [sector number]	SECTOR is used to se: the currently active sector.
$\begin{array}{cc}\text { SEEKVER } & {[0 n]} \\ {[o f f]}\end{array}$	SEEKVER is used to enable or disable seek verification.
UNIT [unit number]	UNIT is used to set the unit to be tested.
VERIFY [byte]	VERIFY will read each sector on the currently selected drive.
VERIEY HEADER	VERIEY HEADER will examine the headers and the ECC code on each sect or of the drive.
*WRITE [loop]	WRITE will write the data from the write buffer to the currently selected sector.
A good non-destructive winchester test is done by typing VERIFY HEADER <cr>. The test will last about 15 minutes. Afterwards, check tie error counter. If it is zero, there are no errors and you can type QUIT <cr> to end the test. If there are errors, follow the steps indicated in part B of the Error Messages section.	

The following is a list of all the error messages developed by the program. Included is an explanation of the error and possible causes.

Winchester is Not Selected

The controller card is unable to select the drive. This could be a fault on the controller, the drive, the cabling or the power supply.

Error Attempting to Reset Drive

The drive was selected and ready. In attempting to do a recalibration, the Trk 0 signal was not observed. This could be due to the drive actuator being locked.

NOTE: Each of the above error conditions gives the user the option of continuing the test. The message DRIVE NOT INITIALIZED will appear on the command screen. The test should be discontinued if this message appears.

Unit is Not Ready

During the running of the test the ready signal from the controller was lost. This could be a fault on the controller board.

Drive is Not Ready

The test program attempted to select a drive, but the drive did not respond with a ready signal. Make sure a valid drive was selected and that it has the proper cable connections.

Drive Write Fault Received
A write fault was received from the Winchester drive during a write. This fault is developed by the drive.

No Interrupt Received Erom Operation

An interrupt signal must be developed by the controller during normal operation. Check controller card and shunting.

Unit Cannot be Selected

The controller status byte does not contain an active select bit. This fault can reside on the controller, interface or drive.

ECC-Uncorrectable Hard Error

ECC error detected by the controller. The error was larger than 8 bits long, and the data was still unreadable after 5 retries.

ECC-Correctable Hard Error
ECC error detected by the controller. The error was 8 bits or less in length, and the data was still unreadable after 5 retries.

ECC-Uncorrectable Soft Error
ECC error detected by the controller. The error was larger than 8 bits long, and the data was readable before 5 retries were completed.

ECC-Correctable Soft Error

ECC error detected by the controller. The error was 8 bits or less in length, and the data was readable before 5 retries were completed.

9-Bit Pattern was Corrected

The ECC circuitry will repair any data failure up to 8 bits in length. If a 9 bit pattern was corrected, this would indicate a failure on the contı oller board.

Header Verification

The information read in the header area of the r :quested sector did not match the requested location. This could be due to data corruption on the drive, a writing problem on the controller, or a reading problem on the controller board.

Disktest Buffer Verification

The data in the buffer did not match the format byte. This error is developed by the VERIFY command. This command expects all data areas to contain the format byte, and this error would be developed if that command is run on a customer's drive that contains data.

A. Command Screen not Displayed - POSSIBLE CAUSES

1. Test is being run in a multi-user operating system.
2. Incorrect power is being supplied to the drive or interface card. See Appendix A.
3. Loose or bad power or data cabling.
4. Bad controller board (replace first).
5. Bad interface board (replace second).
6. Bad Winchester drive (replace third).

There are a number of conditions to be met before the TSTW command screen will be displayed. The test program will look for a ready drive. The drive must be up to the correct operating speed before it will become ready. Check the cables going to the drive. Make sure both the power connections and the data connections are tight.

When the system is powered up, listen to the drive motor. You should hear the plater coming up to correct speed. The drive may be bad if the plater is not turning with correct power going to the drive. On the $8^{\prime \prime}$ Winchesters make sure that the platter and the head actuat or are unlocked.

The drive must present a ready signal to the controller bord. This signal must be sent to the controller board by the interface board. A bad interface card or bad data cable would keep this signal from being transferred.

The second condition that needs to be met to enter the command screen mode is a selected drive. A problem in this area could be due to a fault on the logic card on the drive, or a bad interface or controller board.

B. Errors Developed in Running 'VERIFY HDR' Command

Erfor Interpretation

The most common errors developed by the VERIFY HDR command are ECC type of errors. ECC stands for error correcting code, which is used on the Winchester controller board to locate and possibly correct bad data in the sector. If the error is larger than 8 bits, then the operating system will report the error to the user as a Read error. The test program will flag these errors as Uncorrectable ECC Errors. Depending on the number of errors reported, various repair methods are available.

A small quantity of errors can possibly be repaired by using the test program. The procedure is to first write down the bad locations found by the VERIFY HDR command on a sheet of paper. The errors can be viewed by typing ERROR while at the command screen. The first exror will be displayed. The next error can be viewed by typing <cr>. Continue to type <cr> until all of the errors are viewed, then type cr to return to the command screen. Go to the first location by using the HEAD, CYLINDER and SECTOR commands. Read the sector into the buffer by typing READ. The error counter should increment. Write the data back out to the sector by typing WRITE. Read the location again. If the error counter does not increment, then the header is now correct and the ECC agrees with the data in the sector. Repeat the procedure for all of the bad locations. When completed, clear the error butter with the command ERROR CLEAR. Rerun the VERIFY HDR command. The error counter should now report 0 errors. If any of the errors return, the error cannot be repaired and must be locked out by either the EMTW program or the WALT program located on the operating system disk.

IMS International

FLOPPY DISK SPECIFICATIONS

Physical Size	Number of Sides	Data Capacity	SRT	Manufacturer	
$8^{\prime \prime}$ full	$\mathbf{1}$	610	kbytes	8	Shugart 801
$8^{\prime \prime}$ full	2	1220	kbytes	3	Qume 842
$8^{\prime \prime}$ half	2	1220	kbytes	4	Qume 242
$5^{\prime \prime}$ half 96 tpi	2	772	kbytes	6	Teac FD-55F
$5^{\prime \prime}$ half 48 tpi	2	386	kbytes	6	Teac FD-55B

FORMAT SPECIFICATICINS

Physical
Size
S" all
$8^{\prime \prime}$ all
$5^{\prime \prime} 48 \mathrm{tpi}$
$5^{\prime \prime} 48 \mathrm{tpi}$
$5^{\prime \prime} 96 \mathrm{tpi}$
$5^{\prime \prime} 96 \mathrm{tpi}$

Operating System	Number of Tracks
CP/M	77
TurboDOS	77
CP/M	40
TurboDOS	40
CP/M	80
TurboDOS	80

Number of Reserved Tracks
Sector Size

$\mathbf{2}$	256	bytes
$\mathbf{0}$	1024	bytes
$\mathbf{2}$	256	bytes
$\mathbf{0}$	1024	bytes
$\mathbf{2}$	256	bytes
$\mathbf{2}$	1024	bytes

| Physical
 Size | Operating
 System | Density |
| :---: | :---: | :--- | :---: | :---: | :---: |\quad N\# \quad SC \quad EOT

*Single density is normally not used as an IMS format; rowever, many different software packages are distributed in IBM single density $8^{\prime \prime}$ format (IBM 3740) and the $8^{\prime \prime}$ IMS systems will read this format.

FLOPPY POWER REQUIREMENTS

SIZE	115 V AC	+24V	$\pm 12 \mathrm{~V}$	$\pm 5 \mathrm{~V}$	$\underline{-16 \mathrm{~V}}$	2V
8" full	Yes	Yes	No	Yes	Yes	Yes
$8^{\prime \prime}$ half	No	Yes	No	Yes	No	Yes
5" all	No	No	Yes	Yes	No	Yes

IMS International
8000 Hardware Manual/7.01.83/Page 120

All model numbers are expressed as [EEB-nWWW-xFFz] where
$\mathrm{EE}=\mathrm{basic}$ system enclosure

$$
\begin{aligned}
& {[5 \mathrm{X}]=\text { MODEL 5000SX TABLE TOP SYSTEM }} \\
& {[5 \mathrm{I}]=\text { MODEL 5000IS INTEGRATED SYSTEM }} \\
& {[8 \mathrm{X}]=\text { MODEL 8000SX }} \\
& {[8 \mathrm{~S}]}
\end{aligned}
$$

$B=8$ or 16 bit option (Most are 8 bit)
$n=$ number of Winchesters (omitted if $n=0$ or $n=1$)

WWW = type of Winchesters (omitted if none)

$$
\begin{array}{llll}
{[\mathrm{W} 6]} & =5^{\prime \prime} 6 & \mathrm{Mb} \\
{[\mathrm{~W} 12]} & =5^{\prime \prime} 12 & \mathrm{Mb} \\
{[\mathrm{~W} 24]} & =5^{\prime \prime} 24 & \mathrm{Mb} \\
{[\mathrm{M} 6]} & =8^{\prime \prime} 6 & \mathrm{Mb} \\
{[\mathrm{M} 12]} & =8^{\prime \prime} 12 & \mathrm{Mb} \\
{[\mathrm{M} 24]} & =8^{\prime \prime 24} & \mathrm{Mb} \\
{[\text { M40] }} & =8^{\prime \prime} 40 & \mathrm{Mb} \\
{[\mathrm{M} 85]} & =8^{\prime \prime} 85 & \mathrm{Mb}
\end{array}
$$

$\mathbf{x}=$ number of floppy drives
$\mathrm{FF}=$ type of floppy drive

$[\mathrm{DH}]=5^{\prime \prime}$ double sided half width	48 tpi
$[\mathrm{QH}]=5^{\prime \prime}$ double sided quad density half width	96 tpi
$[\mathrm{DH}]=8^{\prime \prime}$ double sided half width	48 tpi

IMS SYSTEM VERSIONS

BOARDS USED

System	CPU	I/Q	Memo5y
A	451	$44 \times$	465
B	645	631	465
C	645	480	465
D	971		465

BQARD DESCRIPTIONS

Name	Number
CPU-A	451
CPU-B	645
CPU-IO	971
64 K DRAM	465
256K DRAM	961
SPIO-A	444
SPIO-B	631
4SIO	480
MPU	740
MPU	861
FDC	931
WDC	820

IMS International
8000 Hardware Manual/7.01.83/Page 122

